
Improvements to the performance and
applicability of dependency parsing

Daniel FERNÁNDEZ-GONZÁLEZ

DOCTORAL THESIS BY PUBLICATION UDC / 2015

Supervisors

Dr. Manuel VILARES FERRO

Dr. Carlos GÓMEZ-RODRÍGUEZ

PH.D. IN COMPUTATIONAL SCIENCE





Dr. Manuel Vilares Ferro, Catedrático de Universidad del Departamento de
Informática de la Universidade de Vigo,

Dr. Carlos Gómez Rodríguez, Profesor Contratado Doctor del Departamento de
Computación de la Universidade da Coruña,

CERTIFICAN

Que la presente memoria titulada Improvements to the performance and
applicability of dependency parsing ha sido realizada bajo su dirección y constituye
la Tesis presentada por Daniel Fernández González para optar al grado de Doctor con
Mención Internacional por la Universidade da Coruña.

Fdo. Manuel Vilares Ferro Fdo. Carlos Gómez Rodríguez
Director de la Tesis Doctoral Codirector de la Tesis Doctoral





Acknowledgements

This thesis is the result of the help of many people who deserve my infinite gratitude.

First of all, I would like to thank my advisors. Manuel provided the necessary guidance
and advice to meet all goals I set, especially in those moments when the darkness did
not let me see the way. He also contributed with the material and financial support
essential to have a successful research career. Carlos was the main responsible for the
thesis subject. He introduced me in the thrilling field of dependency parsing, taught me
everything he knew about transition-based systems and helped me every time I asked for
it. I really appreciate his commitment during all my research career and, above all, during
the elaboration of the articles that compound this thesis. Both, Manuel and Carlos, formed
a perfect team as supervisors and I always will be grateful.

I was fortunate to do two research visits during my thesis period. I could not imagine
better supervisors in Uppsala and Lisbon. It was in the charming Uppsala where I had the
opportunity to meet and work with one of the fathers of transition-based parsing: Joakim
Nivre. He was a friendly and an always available host. His passion and devotion for his
work is contagious. After a talk with him, it is difficult not to feel motivated to work in
dependency parsing. In Lisbon, I was under the supervision of André F. T. Martins. I have
never met a natural language processing researcher that had such an extended knowledge
in machine learning as him. It is impossible not to learn something when you work with a
person like André. Every discussion with him ends up in valuable knowledge and helpful
advice. I cannot thank them enough for bringing me the opportunity to collaborate with
them in two different articles that are already part of this thesis.

On a personal note, I am deeply grateful to my loving family. They did not participate
directly in this work, but their support was crucial. My parents, José and Dosinda, give me
the education and confidence necessary to address any project no matter how hard it was.
And, in particular, Berta, who has been patiently by my side throughout all this process,
encouraging me to go ahead and finish the work I started four years ago.

Finally, it is worth mentioning that this thesis has been partially funded by the
Ministry of Education under the FPU Grant Program, Ministry of Economy and
Competitiveness/ERDF (grants TIN2010-18552-C03-01 and FFI2014-51978-C2-1-R)
and Xunta de Galicia (grants CN2012/317, CN2012/319, R2014/029 and R2014/034).

i





Computers are incredibly fast, accurate and stupid. Human
beings are incredibly slow, inaccurate and brilliant.

Together they are powerful beyond imagination.
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Abstract

Dependency parsers have attracted a remarkable interest in the last two decades due
to their usefulness in a wide range of natural language processing tasks. They employ
a dependency graph to define the syntactic structure of a given sentence. In particular,
transition-based algorithms provide accurate and efficient dependency syntactic analyses.
However, the main drawback of these techniques is that they tend to suffer from error
propagation. So, an early erroneous decision may place the parser into an incorrect state,
causing more errors in future decisions.

This thesis focuses on improving the accuracy of transition-based parsers by reducing
the effect of error propagation, while preserving their speed and efficiency. Concretely,
we propose five different approaches that proved to be beneficial for their performance,
mitigating the presence of error propagation and boosting its accuracy.

We also extend the usefulness of dependency parsers beyond building dependency
graphs. We present a novel technique that allows these to build constituent representations.
This meets the necessity of the natural language processing community to have an
efficient parser able to provide constituent trees to represent the syntactic structure of
sentences.
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Resumen

Los analizadores de dependencias han generado un gran interés en las últimas décadas
debido a su utilidad en un amplio rango de tareas de procesamiento de lenguaje natural.
Estos utilizan grafos de dependencias para definir la estructura sintáctica de una oración
dada. En particular, los algoritmos basados en transiciones proveen un análisis sintáctico
de dependencias eficiente y preciso. Sin embargo, su principal inconveniente es que
tienden a sufrir propagación de errores. Así, una decisión temprana tomada erróneamente
podría posicionar el analizador en un estado incorrecto, causando más errores en futuras
decisiones.

Esta tesis se centra en mejorar la precisión de los analizadores basados en transiciones
mediante la reducción del efecto de la propagación de errores, mientras mantienen su
velocidad y eficiencia. Concretamente, proponemos cinco enfoques diferentes que han
demostrado ser beneficiosos para su rendimiento, al aliviar la propagación de errores e
incrementar su precisión.

Además, hemos ampliado la utilidad de los analizadores de dependencias más allá
de la construcción de grafos de dependencias. Presentamos una novedosa técnica que
permite que estos sean capaces de construir representaciones de constituyentes. Esto
cubriría la necesidad de la comunidad de procesamiento de lenguaje natural de disponer
de un analizador eficiente capaz de proveer un árbol de constituyentes para representar la
estructura sintáctica de las oraciones.
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Resumo

Os analizadores de dependencias xeraron gran interese nas últimas décadas debido
á súa utilidade nun amplo rango de tarefas de procesamento da linguaxe natural. Estes
utilizan grafos de dependencias para definir a estrutura sintáctica dunha oración dada.
En particular, os algoritmos baseados en transicións provén un análise sintáctico de
dependencias eficiente e preciso. Sen embargo, o seu principal inconveniente é que tenden
a sufrir propagación de erros. Así, unha decisión temprana tomada erroneamente podería
posicionar o analizador nun estado incorrecto, causando máis erros en futuras decisións.

Esta tese centrase en mellorar a precisión dos analizadores baseados en transicións
mediante a redución do efecto da propagación de erros, mentres manteñen a súa
velocidade e eficiencia. Concretamente, propomos cinco diferentes enfoques que
demostraron ser beneficiosos para o seu rendemento, ó aliviar a propagación de erros
e incrementar a súa precisión.

Ademais, ampliámo-la utilidade dos analizadores de dependencias máis alá da
construción de grafos de dependencias. Presentamos unha novidosa técnica que permite
que estes sexan capaces de construir representacións de constituíntes. Isto cubriría a
necesidade da comunidade de procesamento da linguaxe natural de dispor dun analizador
eficiente capaz de prover unha árbore de constituíntes para representar a estrutura
sintáctica das oracións.
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CHAPTER I

Introduction

The final goal pursued by natural language processing (NLP) is to transform unrestricted
natural language text into representations tractable by machines. In that way, raw textual
information can be feasibly used by computers to undertake more complex tasks such as
automatic translation, information extraction or question answering.

Syntactic parsing is one of the most ubiquitous and useful NLP processes. It consists
of determining the grammatical structure of sentences in natural language: given an
input sentence, a parser will map it into its syntactic representation. This underlying
structure can be represented in different formats depending on the particular syntactic
theory followed by the parser.

There are two different widely-used syntactic formalisms for this purpose: constituent
or phrase-structure representations [2, 7] and dependency representations [44]. In the
first case, sentences are analyzed by decomposing them into meaningful parts called
constituents or phrases, and creating relationships between them and the words to finally
build a phrase-structure tree, as shown in Figure 1.1. In dependency parsing, the syntactic
structure of a sentence is represented by means of a dependency graph. This consists of a
set of binary relations called dependencies that link pairs of words of a given sentence to
describe a syntactic relation between them, where one word acts as the head and the other
as the dependent. We call it a dependency tree if every word of the sentence has only one
incoming arc (single-head constraint), the structure is acyclic and only has one root, as
the one described in Figure 1.2.

In the last two decades, dependency parsing has become very popular in the NLP
community, in detriment of its counterpart, constituent parsing. This is mainly because
its representations have some irrefutable advantages over the phrase-stucture formalism.
The lack of intermediate nodes in dependency trees have granted them the simplicity
necessary to represent more complex linguistic phenomena, such as discontinuities
caused by free word order, and has allowed the construction of more efficient parsing
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Chapter 1. Introduction
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Figure 1.1: Constituent tree for an English sentence.
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Figure 1.2: Dependency tree for an English sentence.

algorithms. As a consequence, dependency parsers have been successfully applied in a
wide variety of problems ranging from machine translation [12, 24, 41, 49] and relation
extraction [11, 14, 23, 33] to question answering [8, 10] and opinion mining [22, 46].

In contrast to grammar-driven dependency parsers, a new paradigm centered in data
has emerged in the last twenty years. The explicit representation of knowledge by formal
grammatical rules [27, 43] has been replaced by a data-driven paradigm based on machine
learning and the massive amount of data available. The increasing availability of human
annotated resources, such as the Penn Treebank [28] or those corpora provided by shared
tasks such as CoNLL-X [5] and CoNLL-XI [37], made it possible to apply machine
learning techniques, which automatically extract statistical models from the data without
the need of an explicit grammar, and implement dependency parsers that produce accurate
analyses very efficiently.

Data-driven dependency parsers have been a very fruitful field in NLP, resulting in
some of the most accurate and efficient systems as those by Nivre et al. [38], McDonald
et al. [32], Titov and Henderson [45], Martins et al. [29], Huang and Sagae [20], Koo and
Collins [26], Zhang and Nivre [51], Bohnet and Nivre [3] or Goldberg and Nivre [15].
Practically all these systems can be classified into two families, commonly called graph-
based and transition-based parsers [31, 50].
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Graph-based parsers learn a global model for scoring possible dependency graphs for a
given sentence and, then, the parsing process consists of searching for the highest-scoring
graph. The proposals by McDonald et al. [32] and Martins et al. [29] are well-known
graph-based systems. The main drawback of this approach is that their parsing process is
accomplished in at least a quadratic time complexity.

On the other hand, transition-based parsers proved to be faster and more efficient,
since many of them are able to undertake the analysis of a sentence in linear execution
time; while still providing state-of-the-art accuracies. Given a sentence, the parser
incrementally builds a dependency graph from left to right by greedily choosing the
highest-scoring permissible transition at each state. In that way, the input sentence is
analyzed by a sequence of transitions compounded by the highest-scoring actions. The
set of transitions that the parser can use are individually scored by a previously trained
statistical model called oracle. In addition, there exists a variant in transition-based
parsing that includes beam search for choosing the best sequence of transitions [50],
instead of undertaking it greedily. In fact, one of the state-of-the-art transition-based
parsers is the beam-search-based system by Zhang and Nivre [51].

Unfortunately, the greedy nature that grants them their efficiency also represents their
main weakness. McDonald and Nivre [30] show that the main reason for loss of accuracy
in transition-based parsing is error propagation: a transition erroneously chosen by the
parser may place it in an incorrect state, causing more errors in the transition sequence.
As the sentence is parsed in a sequential process, a mistake in an early stage of that process
can lead to further mistakes in future stages. In particular, one source of error propagation
is the enforcement of the single-head constraint necessary to shape a dependency tree. For
instance, if a transition-based system is parsing the sentence in Figure 1.2 and mistakenly
applies a transition that builds an arc from a3 to tree5 instead of the correct dependency
from tree5 to a3; we will not only fail in creating this dependency but also the one from
is2 to tree5, since we will be in a state where the single-head constraint will not allow to
create two incoming arcs to node tree5. Moreover, long sentences and, especially, long
arcs are more likely to be affected by error propagation, since they need a longer sequence
of transitions to be parsed. In this thesis, we focused our efforts on making transition-
based parsing more accurate by mitigating error propagation, but without penalizing its
advantageous efficiency. In addition, some of the improvements successfully applied in
transition-based parsing can also be applied to dependency parsers of any kind.

In spite of the fact that dependency parsing has been in the spotlight in the last
twenty years, constituent parsing has recently gained interest among NLP researchers.
This was facilitated by the fact that some fields, such as sentiment analysis and opinion
mining [1, 13, 21, 48], require syntax formalisms more informative than dependency
representations. However, the main problem is that most existing constituent parsers are
significantly slow [6, 25, 39], since they need to deal with a heavy grammar constant.
Thus, the NLP community demands phrase-structure parsers as efficient as dependency
systems. To meet this need, we propose a new approach that mixes the best of both worlds:

3



Chapter 1. Introduction

building informative constituent representations by efficient dependency parsing.

Therefore, this thesis aims to contribute to both constituent and dependency
parsing. We improve the performance of dependency parsers (concretely, transition-based
systems) and apply them to undertake phrase-structure parsing in an efficient way.

The remainder of this document is organized as follows: In Chapter 2, we summarize
our main contributions. Chapter 3 discusses the conclusions of our work. And, finally,
Chapter 4 details the published articles that constitute this thesis and includes an original
copy of them for further deepening in the subject. Note that Appendix A contains a
Spanish extended abstract of the thesis.
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CHAPTER II

Contributions

In this chapter, we first introduce some basic definitions and notations concerning
transition-based dependency parsing, which will serve as a basis to present all our
contributions. Secondly, we summarize five different approaches that aim to improve the
accuracy of transition-based parsing by alleviating the effect of error propagation. Finally,
we show how to apply dependency parsing to build the phrase-structure representation of
a given sentence.

2.1 | Preliminaries

2.1.1 | Dependency parsing

A dependency graph is a labelled directed graph that represents the syntactic structure of
a given sentence. More formally, it can be defined as follows:

Definition 1 Let w = w1 . . . wn be an input string. A dependency graph for w1 . . . wn is
a labelled directed graph G = (Vw, A), where Vw = {0, . . . , n} is the set of nodes, and
A ⊆ Vw × L× Vw is the set of labelled directed arcs.

�

Apart from every word of the sentence with index i such that 1 ≤ i ≤ n, the set Vw
includes a special node in index 0 called ROOT, which does not correspond to any token
of the sentence and which will always be a root of the dependency graph.

Each arc in A encodes a dependency relation between two words. We call an edge
(wi, l, wj) in a dependency graph G a dependency link from wi to wj with label l,
represented as wi

l→ wj . We say that wi is the head of wj and, conversely, that wj

5



Chapter 2. Contributions

is a dependent of wi. The labels on dependency links are typically used to represent
their associated syntactic functions, such as SBJ for subject in the dependency link
is2 → This1 in Figure 1.2.

For convenience, we write wi → wj ∈ G if the link (wi,wj) exists (regardless of its
label) and wi →∗ wj ∈ G if there is a (possibly empty) directed path from wi to wj .

Most dependency-based syntactic formalisms are typically restricted to acyclic graphs
where each node has at most one head. Such dependency graphs are called dependency
forests.

Definition 2 A dependency graph G is said to be a dependency forest if it satisfies the
following:

1. Single-head constraint: if wi → wj , then there is no wk 6= wi such that wk → wj .

2. Acyclicity constraint: if wi →∗ wj , then there is no arc wj → wi.

�

Nodes that have no head in a dependency forest are called roots. Apart from the
previous two constraints, some dependency formalisms add the additional constraint that
a dependency forest can have only one root (or, equivalently, that all the nodes of the
graph must be connected). A forest of this form is called a dependency tree.

A dependency parser is the system in charge of parsing a given sentence producing
a dependency graph. In this thesis, we will work with dependency parsers that output
dependency trees. This means that they enforce the single-head and acyclicity constraints,
as well as link all of the graph’s root nodes as dependents of the dummy root node in index
0.

Finally, many dependency parsers are restricted to work with projective dependency
structures in order to preserve their computational efficiency. These are dependency
graphs where the set of nodes reachable by traversing zero or more arcs from any
given node k corresponds to a continuous substring of the input, that is, an interval
{x ∈ Vw | i ≤ x ≤ j}. A graphical identification of projective dependency trees can be
done on drawn graphs as that showed in Figure 1.2, where the absence of crossing links
confirms the projectivity of the structure. To analyze more complex syntactic phenomena,
it is necessary to use non-projective dependency graphs (with crossing links), which allow
the representation of discontinuities caused by free word order.

2.1.2 | Transition systems

The framework proposed by Nivre [36] provides the components necessary for developing
a transition-based dependency parser. According to this, a transition-based parser is a

6



2.1. Preliminaries

deterministic dependency parser defined by a non-deterministic transition system. This
transition system specifies a set of elementary operations that are deterministically applied
by an oracle at each choice point of the parsing process. More formally, they are defined
as follows:

Definition 3 A transition system for dependency parsing is a tuple S = (C, T, cs, Ct),
where

1. C is a set of possible parser configurations,

2. T is a finite set of transitions, which are partial functions t : C → C,

3. cs is a total initialization function that maps each input string w to a unique initial
configuration cs(w), and

4. Ct ⊆ C is a set of terminal configurations.

�

Definition 4 An oracle for a transition system is a function o : C → T .

�

An input sentence w can be parsed using a transition system S = (C, T, cs, Ct) and
an oracle o by starting in the initial configuration cs(w), calling the oracle function on the
current configuration c, and moving to the next configuration by applying the transition
returned by the oracle. This process is repeated until a terminal configuration is reached.
Each sequence of configurations that the parser can traverse from an initial configuration
to a terminal one for some input w is called a transition sequence.

The oracle for practical parsers is implemented by a statistical model previously
trained on treebank data [38] and it is in charge of returning the highest-scoring transition
from the set T to apply on each configuration. This treebank data consists of a huge
amount of sentences manually annotated with their associated dependency graph. In
particular, in this thesis we work with the English Penn Treebank [28] and datasets from
the CoNLL-X [5] and CoNLL-XI [37] shared tasks.

2.1.3 | The arc-eager parser

Nivre’s arc-eager dependency parser [35] is one of the most widely known and used
transition-based parsers. Concretely, the arc-eager transition system (C, T, cs, Ct) is
defined as follows:

7



Chapter 2. Contributions

Transition Stack (σ) Buffer (β) Added Arc

[ROOT0] [This1, ... , tree5]
SHIFT [ROOT0, This1] [is2, ... , tree5]
LASBJ [ROOT0] [is2, ... , tree5] (2, SBJ, 1)
RAROOT [ROOT0, is2] [a3, ... , tree5] (0, ROOT, 2)
SHIFT [ROOT0, is2, a3] [dependency4, tree5]
SHIFT [ROOT0, is2, a3, dependency4] [tree5]
LANMOD [ROOT0, is2, a3] [tree5] (5, NMOD, 4)
LADET [ROOT0, is2] [tree5] (5, DET, 3)
RAPRED [ROOT0, is2, tree5] [ ] (2, PRED, 5)

Figure 2.1: Transition sequence for parsing the sentence in Figure 1.2 using the arc-eager
parser (LA=LEFT-ARC, RA=RIGHT-ARC).

1. C is the set of all configurations of the form c = 〈σ, β,A〉, where σ and β are
disjoint lists of nodes from Vw (for some input w), and A is a set of dependency
arcs over Vw. The list β, called the buffer, is used to hold nodes corresponding to
input words that have not yet been read. The list σ, called the stack, contains nodes
for words that have already been read, but still have dependency links pending to be
created. For convenience, we will use the notation σ|wi to denote a stack with top
wi and tail σ, and the notation wj|β to denote a buffer with top wj and tail β. The
set A of dependency arcs contains the part of the output parse that the system has
constructed at each point.

2. The initial configuration is cs(w1 . . . wn) = 〈[], [w1 . . . wn], ∅〉, where the buffer
initially holds the whole input string while the stack is empty (or cs(w1 . . . wn) =

〈[ROOT0], [w1 . . . wn], ∅〉, if the stack contains the dummy root node).

3. The set of terminal configurations is Ct = {〈σ, [], A〉 ∈ C}, where final
configurations are those with an empty buffer, regardless of the contents of the
stack.

4. The set T has the following transitions:

• SHIFT : 〈σ,wi|β,A〉 ⇒ 〈σ|wi, β, A〉

• REDUCE : 〈σ|wi, β, A〉 ⇒ 〈σ, β,A〉

• LEFT-ARCl :

〈σ|wi, wj|β,A〉 ⇒ 〈σ,wj|β,A∪{wj
l→ wi}〉

8



2.2. Improving dependency parsing performance

only if @wk | wk → wi ∈ A (single-head)

• RIGHT-ARCl :

〈σ|wi, wj |β,A〉 ⇒ 〈σ|wi|wj , β, A∪{wi
l→ wj}〉

only if @wk | wk → wj ∈ A (single-head)

The SHIFT transition is used to read words from the input string, by moving the next
node in the buffer to the top of the stack. The LEFT-ARCl transition creates a leftward
dependency arc labelled with l from the first node on the buffer to the topmost node
on the stack and pops the stack. Conversely to this, the RIGHT-ARCl transition builds
a rightward dependency arc labelled with l from the topmost node on the stack to the
first node on the buffer and pushes the first node on the buffer onto the stack. Finally,
the REDUCE transition is used to pop the topmost node from the stack when we have
finished building arcs to or from it. Figure 2.1 shows a transition sequence in the arc-
eager transition system which derives the labelled dependency graph in Figure 1.2.

Note that the arc-eager parser is a linear-time algorithm, since it is guaranteed to
terminate after 2n transitions (with n being the length of a given input string), and is
restricted to projective dependency trees.

Other well-known transition systems are: the arc-standard and Covington parsers [9,
36], as well as, the planar and two-planar parsers [18].

2.2 | Improving dependency parsing performance

In this section we address the error-propagation problem and present different techniques
to improve the accuracy of transition-based parsing.

2.2.1 | Undirected dependency parsing

Our first attempt to reduce the effect of error propagation introduces a novel approach:
undirected dependency parsing. Until now, all existing dependency systems build directed
graphs (Figure 1.2), where the dependencies have a direction from the head word to
the dependent one. We develop transition-based parsers able to work with undirected
dependency graphs as the one presented in Figure 2.2. This means that the single-head
constraint need not be observed during the parsing process, since the directed notions
of head and dependent (or of incoming and outgoing arcs) are lost in undirected graphs.
Therefore, this gives the parser more freedom, and can prevent situations where enforcing
the constraint leads to error propagation.

After the undirected parsing process, we will need a post-processing step to recover
the direction of the dependencies, generating a valid dependency structure. Thus, some
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Figure 2.2: Undirected dependency graph for the English sentence in Figure 1.2.

complexity is moved from the transition-based parsing process to this post-processing
step. This simplification leads the undirected parser to avoid more errors than the original
directed version, achieving an increase in accuracy in most of the experiments tested.

Concretely, we implement the undirected version of the planar and two-planar [18]
and Covington [9, 36] transition-based parsers and test them on the English Penn
Treebank [28] and datasets from the CoNLL-X shared task [5]. The results proved the
usefulness of undirected dependency parsing and a posterior analysis showed that, indeed,
this approach mitigates the effect of error propagation.

This approach can be applied to dependency parsers of any kind and further
information of this technique can be found in Articles 4.1 and 4.2. Please note that
Article 4.2 is an extended version of Article 4.1, which adds further content such as new
experiments and a thorough error analysis.

2.2.2 | Adding buffer transitions

Since transition-based parsing works by following a sequence of transitions, the longer
the transition sequence is, the more the error propagation will affect the later stages of the
process. In other words, it is more likely to make more mistakes (and propagate them) if
the number of decisions that the parser has to make to parse a sentence is greater. This was
the initial intuition we followed to propose this approach: we intend to reduce the number
of transitions that a parser needs to analyze a given sentence. To achieve that, we had to
design new transitions whose effect replaces two or more original transitions. It was also
desirable that these new transitions were applied in simple scenarios where the parser can
easily use them without overloading the classifier’s job.

In particular, we develop four different transitions for the well-known arc-eager
parser [35] detailed in Section 2.1.2, called buffer transitions. They are defined as follows:

• LEFT-BUFFER-ARCl :

(σ,wi|wj|β,A)⇒ (σ,wj|β,A ∪ {wj
l→ wi}).

• RIGHT-BUFFER-ARCl :

(σ,wi|wj|β,A)⇒ (σ,wi|β,A ∪ {wi
l→ wj}).

10



2.2. Improving dependency parsing performance

• LEFT-NONPROJ-BUFFER-ARCl :

(σ|wi, wj|wk|β,A) ⇒ (σ,wj|wk|β,A ∪ {(wk
l→ wi)}). Preconditions: i 6= 0 and

6 ∃wm, l
′ | (wm, l

′, wi) ∈ A (single-head constraint)

• RIGHT-NONPROJ-BUFFER-ARCl :

(σ|wi, wj|wk|β,A)⇒ (σ|wi, wj|β,A ∪ {wi
l→ wk}).

These are transitions that create a dependency arc involving some node in the buffer,
which would typically be considered unavailable for linking by the standard transitions.
In that way, these buffer transitions construct some easy dependency arcs in advance,
before the involved nodes reach the stack, so that the classifier’s job when choosing
among standard transitions is simplified. In addition, LEFT-NONPROJ-BUFFER-ARC and
RIGHT-NONPROJ-BUFFER-ARC extend the coverage of the original arc-eager parser.
These two transitions allow the creation of a limited set of non-projective dependency
arcs, since they act on non-contiguous nodes in the stack and buffer.

Note as well that LEFT-BUFFER-ARC and RIGHT-BUFFER-ARC transitions are
equivalent to applying the sequence of standard transitions SHIFT + LEFT-ARC and
SHIFT + RIGHT-ARC + REDUCE, respectively, resulting in a shortening of the final
transition sequence. On the other hand, the effect of LEFT-NONPROJ-BUFFER-ARC

and RIGHT-NONPROJ-BUFFER-ARC transitions cannot be expressed with standard
transitions, since they add a new functionality not present in the arc-eager parser, but
they also involve a shortening of the transition sequence.

Experiments on datasets from the CoNLL-X shared task [5] back our hypothesis and
show that by adding a buffer transition to the arc-eager parser its accuracy is boosted in
practically all cases.

This approach is detailed in Article 4.3 and can be used in any transition-based
dependency parser that uses a buffer and a stack in its configurations.

2.2.3 | Using reverse parsing

Transition-based parsers analyze a sentence from left to right. Due to error propagation,
the probability of choosing an incorrect transition tends to be higher as we approach
the end of a given sentence. As a result, the arcs situated in the rightmost side of the
dependency graph suffer a higher loss in accuracy. It seems reasonable that applying a
transition-based system that parses the sentence from right to left might be more accurate
on the rightmost arcs of the graph. In fact, this was the main idea that led us to propose
the use of reverse parsing. In particular, we present a combinative system, where a left-
to-right parser is combined with its reverse right-to-left variant.

It has been proven that analyzing a sentence in reverse order does not improve the
global accuracy of transition-based parsers [34]. However, the reverse parser is able
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to build correctly some arcs of the dependency graph that the original version creates
erroneously. Concretely, we found out that, in addition to having a better performance
in rightmost arcs, the right-to-left parser is able to achieve higher accuracy in arcs with
certain lengths. To take advantage of that, we present an efficient combination system that
obtains a new dependency graph by joining the dependency graph created by each parser.
This system uses two different strategies to accomplish the combination: a strategy based
on the position of the arcs and another based on the length of the arcs.

We tested this novel technique in different transition-based parsers on the English
Penn Treebank [28] and datasets from the CoNLL-X shared task [5]. The results
obtained show that this approach with any of both strategies produces improvements
in the accuracy of the transition-based parsers tested on all of the datasets used in the
experiments (see more details in Article 4.4).

2.2.4 | Arc-eager parsing with the tree constraint

The research work described in Article 4.5 concerns only the arc-eager transition-based
parser [35] described in Section 2.1.2.

The arc-eager algorithm might reach a terminal configuration without completely
emptying the stack (regardless the dummy root). Due to errors produced during the
parsing process, some words left in the stack, might have not been connected to
the built dependency graph (or, equivalently, might have no head). This causes a
fragmented dependency graph as output of the parsing process. The ideal output should
be a connected, one-rooted, single-head constrained and acyclic dependency tree. To
accomplish this, the standard solution is to convert this fragmented graph into a
dependency tree by connecting all words without head in the stack to the artificial dummy
root at the end of the parsing process. This heuristic achieves a well-formed dependency
tree, but does not mitigate the loss in accuracy caused by errors committed during the
analysis.

We define a modification of the arc-eager algorithm which guarantees that, after the
analysis, the resulting graph is a dependency tree. Concretely, we add a deterministic
UNSHIFT transition that, if the buffer is empty, pops words without head in the stack
and pushes them back into the buffer, so that they can be processed again. We also
set a new terminal configuration that entails not only an empty buffer, but also an
empty stack (regardless the dummy root). In that way, by disabling the standard SHIFT

transition, we force the arc-eager parser to create arcs on these words until reach the new
terminal configuration, since the parser is only allowed to apply LEFT-ARC, RIGHT-ARC

and REDUCE transitions (the latter is only allowed on words with a head and is used
deterministically when the buffer is empty). As a result, the arc-eager parser will have the
opportunity to rectify some mistakes made during the parsing process.

Empirical evaluations on all datasets from the CoNLL-X shared task [5] concluded
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that the tree-constrained arc-eager parser consistently outperforms the old system with
the standard heuristic of attaching all unattached tokens to the artificial root node.

2.2.5 | Non-projective dynamic oracle

In order to address the error-propagation problem in transition-based parsing, Goldberg
and Nivre [15] developed a new strategy called dynamic oracles. It consists of endowing
the oracles of transition-based systems with the capacity to tolerate errors produced during
the parsing process, mitigating their impact in the resulting dependency graph. These new
oracles are designed to recover from the presence of mistakes made in previous decisions
and miss the minimum number of arcs in subsequent decisions.

Unlike standard oracles that are trained with the correct transition sequence necessary
to analyse a given sentence, dynamic oracles are trained with a non-optimal sequence.
During training, some transitions are randomly selected to simulate the errors committed
during parsing time. In that way, dynamic oracles will be ready to deal with errors
produced in the real parsing process.

Different research works provided dynamic oracles for the arc-eager and other well-
known projective transition-based algorithms [15, 16, 17], as well as, for the Attardi
parser [19], which supports a restricted set of non-projective arcs. However, the lack of an
unrestricted non-projective dynamic oracle, gave us the motivation to propose this strategy
on the Covington parser [9, 36]. This is an algorithm with full coverage on non-projective
arcs and is considered one of the fastest transition-based systems in practice [47].

We implemented an efficient dynamic oracle specifically adapted to the Covington
parser and tested its performance on datasets from the CoNLL-X [5] and CoNLL-XI [37]
shared tasks. The results proved that dynamic oracles are also beneficial for the non-
projective Covington algorithm, increasing its accuracy significantly.

In Article 4.6, we present the details of this contribution.

2.3 | Reduction of constituent parsing to dependency parsing

As a final goal of this thesis, we intended to use efficient dependency parsing to build
informative constituent representations. To tackle this task, it was necessary to develop an
intermediate formalism that allows to reduce constituent parsing to dependency parsing.
In that way, an off-the-shelf dependency parser would be enough to build an efficient and
accurate constituent parser.

We base our approach in the novel notion of head-ordered dependency trees. After
determining the head words of each phrase, we encode the structure of a constituent tree
into a dependency one as we can see in Figure 2.3. In particular, we use the outgoing
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Figure 2.3: A constituent tree (top) and its corresponding head-ordered dependency
tree (bottom). The head words and part-of-speech tags are marked in bold and italics,
respectively.

dependency labels of the head words to save each constituent node (concretely, the parent
node of each phrase where those words act as the head) together with an index that
indicates the order of attachment in the phrase-structure tree. For instance, in Figure 2.3
the word is is the head of the phrases with parent nodes VP and S, therefore, we encode
both constituent nodes with the dependency labels VP#1 and S#2, respectively, where
indexes #1 and #2 indicate that VP is attached first in the constituent tree with respect to
S. If we ignore the unary node NP (dropped during the conversion) and the part-of-speech
tags, we can see that both trees are isomorphic. This enables a dependency-to-constituent
conversion necessary to produce constituent trees with dependency parsers. In addition,
the unary nodes can be efficiently recovered in a post-processing step.

The proposed system obtained very competitive results on par with the phrase-
structure Berkeley parser [39] on the English Penn Treebank [28], and with the best
single system in the recent SPMRL14 shared task [40]. We also performed experiments on
discontinuous German treebanks such as Tiger [4] and Negra [42], surpassing the current
state of the art by a wide margin.

A thorough description of this technique is shown in Article 4.7.
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CHAPTER III

Conclusion

Throughout this thesis we presented different novel techniques to improve the accuracy of
transition-based dependency parsing. In particular, the proposed approaches tackled the
main source of loss in accuracy in this kind of techniques: error propagation.

Experiments in different languages from the English Penn Treebank [28], the CoNLL-
X [5] and CoNLL-XI [37] shared tasks proved that all contributions were beneficial for
the performance of transition-based systems. In all cases, we achieved an increment in
accuracy without penalizing their efficiency. In our research work, we also report detailed
error analyses that show how our techniques mitigate error propagation.

Note as well that the approaches described here are perfectly compatible with beam-
search-based transition-based parsers and any technique that improves parsing accuracy.
In fact, our five contributions could be applied together under the same system. In
addition, some of the presented strategies can be extended to other dependency parsers:
for instance, undirected parsing might be also beneficial in graph-based dependency
approaches.

Moreover, we expand the applicability of dependency parsing beyond the dependency
formalism itself. We present a novel technique to perform accurate constituent parsing
with an off-the-shelf dependency parser. In that way, syntax analyses can be efficiently
undertaken by a dependency parser in either of the two widely-used formalisms. Of
course, the dependency parser can incorporate our improvements to accuracy, so that they
extend to constituents as well.

In conclusion, we can affirm that the contributions developed during this thesis have
enriched the transition-based parsing field with new techniques, as well as have provided
a novel approach to build constituent structures efficiently.
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Abstract
We introduce a new approach to transition-
based dependency parsing in which the
parser does not directly construct a depen-
dency structure, but rather an undirected
graph, which is then converted into a di-
rected dependency tree in a post-processing
step. This alleviates error propagation,
since undirected parsers do not need to ob-
serve the single-head constraint.

Undirected parsers can be obtained by sim-
plifying existing transition-based parsers
satisfying certain conditions. We apply this
approach to obtain undirected variants of
the planar and 2-planar parsers and of Cov-
ington’s non-projective parser. We perform
experiments on several datasets from the
CoNLL-X shared task, showing that these
variants outperform the original directed al-
gorithms in most of the cases.

1 Introduction
Dependency parsing has proven to be very use-
ful for natural language processing tasks. Data-
driven dependency parsers such as those by Nivre
et al. (2004), McDonald et al. (2005), Titov and
Henderson (2007), Martins et al. (2009) or Huang
and Sagae (2010) are accurate and efficient, they
can be trained from annotated data without the
need for a grammar, and they provide a simple
representation of syntax that maps to predicate-
argument structure in a straightforward way.

In particular, transition-based dependency
parsers (Nivre, 2008) are a type of dependency
parsing algorithms which use a model that scores
transitions between parser states. Greedy deter-
ministic search can be used to select the transition
to be taken at each state, thus achieving linear or
quadratic time complexity.

0          1          2          3

Figure 1: An example dependency structure where
transition-based parsers enforcing the single-head con-
straint will incur in error propagation if they mistak-
enly build a dependency link 1 → 2 instead of 2 → 1
(dependency links are represented as arrows going
from head to dependent).

It has been shown by McDonald and Nivre
(2007) that such parsers suffer from error prop-
agation: an early erroneous choice can place the
parser in an incorrect state that will in turn lead to
more errors. For instance, suppose that a sentence
whose correct analysis is the dependency graph
in Figure 1 is analyzed by any bottom-up or left-
to-right transition-based parser that outputs de-
pendency trees, therefore obeying the single-head
constraint (only one incoming arc is allowed per
node). If the parser chooses an erroneous transi-
tion that leads it to build a dependency link from
1 to 2 instead of the correct link from 2 to 1, this
will lead it to a state where the single-head con-
straint makes it illegal to create the link from 3 to
2. Therefore, a single erroneous choice will cause
two attachment errors in the output tree.

With the goal of minimizing these sources of
errors, we obtain novel undirected variants of
several parsers; namely, of the planar and 2-
planar parsers by Gómez-Rodrı́guez and Nivre
(2010) and the non-projective list-based parser
described by Nivre (2008), which is based on
Covington’s algorithm (Covington, 2001). These
variants work by collapsing the LEFT-ARC and
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RIGHT-ARC transitions in the original parsers,
which create right-to-left and left-to-right depen-
dency links, into a single ARC transition creating
an undirected link. This has the advantage that
the single-head constraint need not be observed
during the parsing process, since the directed no-
tions of head and dependent are lost in undirected
graphs. This gives the parser more freedom and
can prevent situations where enforcing the con-
straint leads to error propagation, as in Figure 1.

On the other hand, these new algorithms have
the disadvantage that their output is an undirected
graph, which has to be post-processed to recover
the direction of the dependency links and generate
a valid dependency tree. Thus, some complexity
is moved from the parsing process to this post-
processing step; and each undirected parser will
outperform the directed version only if the simpli-
fication of the parsing phase is able to avoid more
errors than are generated by the post-processing.
As will be seen in latter sections, experimental re-
sults indicate that this is in fact the case.

The rest of this paper is organized as follows:
Section 2 introduces some notation and concepts
that we will use throughout the paper. In Sec-
tion 3, we present the undirected versions of the
parsers by Gómez-Rodrı́guez and Nivre (2010)
and Nivre (2008), as well as some considerations
about the feature models suitable to train them. In
Section 4, we discuss post-processing techniques
that can be used to recover dependency trees from
undirected graphs. Section 5 presents an empir-
ical study of the performance obtained by these
parsers, and Section 6 contains a final discussion.

2 Preliminaries

2.1 Dependency Graphs

Let w = w1 . . . wn be an input string. A de-
pendency graph for w is a directed graph G =
(Vw, E), where Vw = {0, . . . , n} is the set of
nodes, and E ⊆ Vw × Vw is the set of directed
arcs. Each node in Vw encodes the position of
a token in w, and each arc in E encodes a de-
pendency relation between two tokens. We write
i → j to denote a directed arc (i, j), which will
also be called a dependency link from i to j.1 We

1In practice, dependency links are usually labeled, but
to simplify the presentation we will ignore labels throughout
most of the paper. However, all the results and algorithms
presented can be applied to labeled dependency graphs and
will be so applied in the experimental evaluation.

say that i is the head of j and, conversely, that j
is a syntactic dependent of i.

Given a dependency graph G = (Vw, E), we
write i →? j ∈ E if there is a (possibly empty)
directed path from i to j; and i ↔? j ∈ E if
there is a (possibly empty) path between i and j in
the undirected graph underlying G (omitting the
references to E when clear from the context).

Most dependency-based representations of syn-
tax do not allow arbitrary dependency graphs, in-
stead, they are restricted to acyclic graphs that
have at most one head per node. Dependency
graphs satisfying these constraints are called de-
pendency forests.

Definition 1 A dependency graph G is said to be
a forest iff it satisfies:

1. Acyclicity constraint: if i →? j, then not
j → i.

2. Single-head constraint: if j → i, then there
is no k 6= j such that k → i.

A node that has no head in a dependency for-
est is called a root. Some dependency frame-
works add the additional constraint that depen-
dency forests have only one root (or, equivalently,
that they are connected). Such a forest is called a
dependency tree. A dependency tree can be ob-
tained from any dependency forest by linking all
of its root nodes as dependents of a dummy root
node, conventionally located in position 0 of the
input.

2.2 Transition Systems

In the framework of Nivre (2008), transition-
based parsers are described by means of a non-
deterministic state machine called a transition
system.

Definition 2 A transition system for dependency
parsing is a tuple S = (C, T, cs, Ct), where

1. C is a set of possible parser configurations,
2. T is a finite set of transitions, which are par-

tial functions t : C → C,
3. cs is a total initialization function mapping

each input string to a unique initial configu-
ration, and

4. Ct ⊆ C is a set of terminal configurations.

To obtain a deterministic parser from a non-
deterministic transition system, an oracle is used
to deterministically select a single transition at
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each configuration. An oracle for a transition sys-
tem S = (C, T, cs, Ct) is a function o : C → T .
Suitable oracles can be obtained in practice by
training classifiers on treebank data (Nivre et al.,
2004).

2.3 The Planar, 2-Planar and Covington
Transition Systems

Our undirected dependency parsers are based
on the planar and 2-planar transition systems
by Gómez-Rodrı́guez and Nivre (2010) and the
version of the Covington (2001) non-projective
parser defined by Nivre (2008). We now outline
these directed parsers briefly, a more detailed de-
scription can be found in the above references.

2.3.1 Planar

The planar transition system by Gómez-
Rodrı́guez and Nivre (2010) is a linear-time
transition-based parser for planar dependency
forests, i.e., forests whose dependency arcs do not
cross when drawn above the words. The set of
planar dependency structures is a very mild ex-
tension of that of projective structures (Kuhlmann
and Nivre, 2006).

Configurations in this system are of the form
c = 〈Σ, B,A〉 where Σ and B are disjoint lists of
nodes from Vw (for some input w), and A is a set
of dependency links over Vw. The list B, called
the buffer, holds the input words that are still to
be read. The list Σ, called the stack, is initially
empty and is used to hold words that have depen-
dency links pending to be created. The system
is shown at the top in Figure 2, where the nota-
tion Σ | i is used for a stack with top i and tail Σ,
and we invert the notation for the buffer for clarity
(i.e., i | B as a buffer with top i and tail B).

The system reads the input sentence and creates
links in a left-to-right order by executing its four
transitions, until it gets to a terminal configura-
tion. A SHIFT transition moves the first (leftmost)
node in the buffer to the top of the stack. Transi-
tions LEFT-ARC and RIGHT-ARC create leftward
or rightward link, respectively, involving the first
node in the buffer and the topmost node in the
stack. Finally, REDUCE transition is used to pop
the top word from the stack when we have fin-
ished building arcs to or from it.

2.3.2 2-Planar

The 2-planar transition system by Gómez-
Rodrı́guez and Nivre (2010) is an extension of

the planar system that uses two stacks, allowing
it to recognize 2-planar structures, a larger set
of dependency structures that has been shown to
cover the vast majority of non-projective struc-
tures in a number of treebanks (Gómez-Rodrı́guez
and Nivre, 2010).

This transition system, shown in Figure 2, has
configurations of the form c = 〈Σ0,Σ1, B,A〉 ,
where we call Σ0 the active stack and Σ1 the in-
active stack. Its SHIFT, LEFT-ARC, RIGHT-ARC

and REDUCE transitions work similarly to those
in the planar parser, but while SHIFT pushes the
first word in the buffer to both stacks; the other
three transitions only work with the top of the ac-
tive stack, ignoring the inactive one. Finally, a
SWITCH transition is added that makes the active
stack inactive and vice versa.

2.3.3 Covington Non-Projective

Covington (2001) proposes several incremen-
tal parsing strategies for dependency representa-
tions and one of them can recover non-projective
dependency graphs. Nivre (2008) implements a
variant of this strategy as a transition system with
configurations of the form c = 〈λ1, λ2, B,A〉,
where λ1 and λ2 are lists containing partially pro-
cessed words and B is the buffer list of unpro-
cessed words.

The Covington non-projective transition sys-
tem is shown at the bottom in Figure 2. At each
configuration c = 〈λ1, λ2, B,A〉, the parser has
to consider whether any dependency arc should
be created involving the top of the buffer and the
words in λ1. A LEFT-ARC transition adds a link
from the first node j in the buffer to the node in the
head of the list λ1, which is moved to the list λ2

to signify that we have finished considering it as a
possible head or dependent of j. The RIGHT-ARC

transition does the same manipulation, but creat-
ing the symmetric link. A NO-ARC transition re-
moves the head of the list λ1 and inserts it at the
head of the list λ2 without creating any arcs: this
transition is to be used where there is no depen-
dency relation between the top node in the buffer
and the head of λ1, but we still may want to cre-
ate an arc involving the top of the buffer and other
nodes in λ1. Finally, if we do not want to create
any such arcs at all, we can execute a SHIFT tran-
sition, which advances the parsing process by re-
moving the first node in the bufferB and inserting
it at the head of a list obtained by concatenating
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λ1 and λ2. This list becomes the new λ1, whereas
λ2 is empty in the resulting configuration.

Note that the Covington parser has quadratic
complexity with respect to input length, while the
planar and 2-planar parsers run in linear time.

3 The Undirected Parsers

The transition systems defined in Section 2.3
share the common property that their LEFT-ARC

and RIGHT-ARC have exactly the same effects ex-
cept for the direction of the links that they create.
We can take advantage of this property to define
undirected versions of these transition systems, by
transforming them as follows:

• Configurations are changed so that the arc set
A is a set of undirected arcs, instead of di-
rected arcs.

• The LEFT-ARC and RIGHT-ARC transitions
in each parser are collapsed into a single ARC

transition that creates an undirected arc.

• The preconditions of transitions that guaran-
tee the single-head constraint are removed,
since the notions of head and dependent are
lost in undirected graphs.

By performing these transformations and leaving
the systems otherwise unchanged, we obtain the
undirected variants of the planar, 2-planar and
Covington algorithms that are shown in Figure 3.

Note that the transformation can be applied
to any transition system having LEFT-ARC and
RIGHT-ARC transitions that are equal except for
the direction of the created link, and thus col-
lapsable into one. The above three transition sys-
tems fulfill this property, but not every transition
system does. For example, the well-known arc-
eager parser of Nivre (2003) pops a node from the
stack when creating left arcs, and pushes a node
to the stack when creating right arcs, so the trans-
formation cannot be applied to it.2

2One might think that the arc-eager algorithm could still
be transformed by converting each of its arc transitions into
an undirected transition, without collapsing them into one.
However, this would result into a parser that violates the
acyclicity constraint, since the algorithm is designed in such
a way that acyclicity is only guaranteed if the single-head
constraint is kept. It is easy to see that this problem cannot
happen in parsers where LEFT-ARC and RIGHT-ARC transi-
tions have the same effect: in these, if a directed graph is not
parsable in the original algorithm, its underlying undirected
graph cannot not be parsable in the undirected variant.

3.1 Feature models

Some of the features that are typically used to
train transition-based dependency parsers depend
on the direction of the arcs that have been built up
to a certain point. For example, two such features
for the planar parser could be the POS tag associ-
ated with the head of the topmost stack node, or
the label of the arc going from the first node in the
buffer to its leftmost dependent.3

As the notion of head and dependent is lost in
undirected graphs, this kind of features cannot be
used to train undirected parsers. Instead, we use
features based on undirected relations between
nodes. We found that the following kinds of fea-
tures worked well in practice as a replacement for
features depending on arc direction:

• Information about the ith node linked to a
given node (topmost stack node, topmost
buffer node, etc.) on the left or on the right,
and about the associated undirected arc, typi-
cally for i = 1, 2, 3,

• Information about whether two nodes are
linked or not in the undirected graph, and
about the label of the arc between them,

• Information about the first left and right
“undirected siblings” of a given node, i.e., the
first node q located to the left of the given node
p such that p and q are linked to some common
node r located to the right of both, and vice
versa. Note that this notion of undirected sib-
lings does not correspond exclusively to sib-
lings in the directed graph, since it can also
capture other second-order interactions, such
as grandparents.

4 Reconstructing the dependency forest
The modified transition systems presented in the
previous section generate undirected graphs. To
obtain complete dependency parsers that are able
to produce directed dependency forests, we will
need a reconstruction step that will assign a direc-
tion to the arcs in such a way that the single-head
constraint is obeyed. This reconstruction step can
be implemented by building a directed graph with
weighted arcs corresponding to both possible di-
rections of each undirected edge, and then finding
an optimum branching to reduce it to a directed

3These example features are taken from the default model
for the planar parser in version 1.5 of MaltParser (Nivre et
al., 2006).
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Planar initial/terminal configurations: cs(w1 . . . wn) = 〈[], [1 . . . n], ∅〉, Cf = {〈Σ, [], A〉 ∈ C}

Transitions: SHIFT 〈Σ, i|B,A〉 ⇒ 〈Σ|i, B,A〉
REDUCE 〈Σ|i, B,A〉 ⇒ 〈Σ, B,A〉
LEFT-ARC 〈Σ|i, j|B,A〉 ⇒ 〈Σ|i, j|B,A ∪ {(j, i)}〉

only if @k | (k, i) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

RIGHT-ARC 〈Σ|i, j|B,A〉 ⇒ 〈Σ|i, j|B,A ∪ {(i, j)}〉
only if @k | (k, j) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

2-Planar initial/terminal configurations: cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉, Cf = {〈Σ0,Σ1, [], A〉 ∈ C}

Transitions: SHIFT 〈Σ0,Σ1, i|B,A〉 ⇒ 〈Σ0|i,Σ1|i, B,A〉
REDUCE 〈Σ0|i,Σ1, B,A〉 ⇒ 〈Σ0,Σ1, B,A〉
LEFT-ARC 〈Σ0|i,Σ1, j|B,A〉 ⇒ 〈Σ0|i,Σ1, j|B,A ∪ {j, i)}〉

only if @k | (k, i) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

RIGHT-ARC 〈Σ0|i,Σ1, j|B,A〉 ⇒ 〈Σ0|i,Σ1, j|B,A ∪ {(i, j)}〉
only if @k | (k, j) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

SWITCH 〈Σ0,Σ1, B,A〉 ⇒ 〈Σ1,Σ0, B,A〉
Covington initial/term. configurations: cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉, Cf = {〈λ1, λ2, [], A〉 ∈ C}

Transitions: SHIFT 〈λ1, λ2, i|B,A〉 ⇒ 〈λ1 · λ2|i, [], B,A〉
NO-ARC 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
LEFT-ARC 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {(j, i)}〉

only if @k | (k, i) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

RIGHT-ARC 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {(i, j)}〉
only if @k | (k, j) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

Figure 2: Transition systems for planar, 2-planar and Covington non-projective dependency parsing.

Undirected Planar initial/term. conf.: cs(w1 . . . wn) = 〈[], [1 . . . n], ∅〉, Cf = {〈Σ, [], A〉 ∈ C}

Transitions: SHIFT 〈Σ, i|B,A〉 ⇒ 〈Σ|i, B,A〉
REDUCE 〈Σ|i, B,A〉 ⇒ 〈Σ, B,A〉
ARC 〈Σ|i, j|B,A〉 ⇒ 〈Σ|i, j|B,A ∪ {{i, j}}〉

only if i↔∗ j 6∈ A (acyclicity).

Undirected 2-Planar initial/term. conf.: cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉, Cf = {〈Σ0,Σ1, [], A〉 ∈ C}

Transitions: SHIFT 〈Σ0,Σ1, i|B,A〉 ⇒ 〈Σ0|i,Σ1|i, B,A〉
REDUCE 〈Σ0|i,Σ1, B,A〉 ⇒ 〈Σ0,Σ1, B,A〉
ARC 〈Σ0|i,Σ1, j|B,A〉 ⇒ 〈Σ0|i,Σ1, j|B,A ∪ {{i, j}}〉

only if i↔∗ j 6∈ A (acyclicity).

SWITCH 〈Σ0,Σ1, B,A〉 ⇒ 〈Σ1,Σ0, B,A〉
Undirected Covington init./term. conf.: cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉, Cf = {〈λ1, λ2, [], A〉 ∈ C}

Transitions: SHIFT 〈λ1, λ2, i|B,A〉 ⇒ 〈λ1 · λ2|i, [], B,A〉
NO-ARC 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
ARC 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {{i, j}}〉

only if i↔∗ j 6∈ A (acyclicity).

Figure 3: Transition systems for undirected planar, 2-planar and Covington non-projective dependency parsing.
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tree. Different criteria for assigning weights to
arcs provide different variants of the reconstruc-
tion technique.

To describe these variants, we first introduce
preliminary definitions. Let U = (Vw, E) be
an undirected graph produced by an undirected
parser for some string w. We define the follow-
ing sets of arcs:

A1(U) = {(i, j) | j 6= 0 ∧ {i, j} ∈ E},
A2(U) = {(0, i) | i ∈ Vw}.

Note that A1(U) represents the set of arcs ob-
tained from assigning an orientation to an edge
in U , except arcs whose dependent is the dummy
root, which are disallowed. On the other hand,
A2(U) contains all the possible arcs originating
from the dummy root node, regardless of whether
their underlying undirected edges are in U or not;
this is so that reconstructions are allowed to link
unattached tokens to the dummy root.

The reconstruction process consists of finding
a minimum branching (i.e. a directed minimum
spanning tree) for a weighted directed graph ob-
tained from assigning a cost c(i, j) to each arc
(i, j) of the following directed graph:

D(U) = {Vw, A(U) = A1(U) ∪A2(U)}.

That is, we will find a dependency tree T =
(Vw, AT ⊆ A(U)) such that the sum of costs of
the arcs in AT is minimal. In general, such a min-
imum branching can be calculated with the Chu-
Liu-Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967). Since the graph D(U) has O(n)
nodes and O(n) arcs for a string of length n, this
can be done in O(n log n) if implemented as de-
scribed by Tarjan (1977).

However, applying these generic techniques is
not necessary in this case: since our graph U is
acyclic, the problem of reconstructing the forest
can be reduced to choosing a root word for each
connected component in the graph, linking it as
a dependent of the dummy root and directing the
other arcs in the component in the (unique) way
that makes them point away from the root.

It remains to see how to assign the costs c(i, j)
to the arcs of D(U): different criteria for assign-
ing scores will lead to different reconstructions.

4.1 Naive reconstruction

A first, very simple reconstruction technique can
be obtained by assigning arc costs to the arcs in

A(U) as follows:

c(i, j)

{
1 if (i, j) ∈ A1(U),
2 if (i, j) ∈ A2(U) ∧ (i, j) 6∈ A1(U).

This approach gives the same cost to all arcs
obtained from the undirected graph U , while also
allowing (at a higher cost) to attach any node to
the dummy root. To obtain satisfactory results
with this technique, we must train our parser to
explicitly build undirected arcs from the dummy
root node to the root word(s) of each sentence us-
ing arc transitions (note that this implies that we
need to represent forests as trees, in the manner
described at the end of Section 2.1). Under this
assumption, it is easy to see that we can obtain the
correct directed tree T for a sentence if it is pro-
vided with its underlying undirected tree U : the
tree is obtained in O(n) as the unique orientation
of U that makes each of its edges point away from
the dummy root.

This approach to reconstruction has the advan-
tage of being very simple and not adding any com-
plications to the parsing process, while guarantee-
ing that the correct directed tree will be recovered
if the undirected tree for a sentence is generated
correctly. However, it is not very robust, since the
direction of all the arcs in the output depends on
which node is chosen as sentence head and linked
to the dummy root. Therefore, a parsing error af-
fecting the undirected edge involving the dummy
root may result in many dependency links being
erroneous.

4.2 Label-based reconstruction

To achieve a more robust reconstruction, we use
labels to encode a preferred direction for depen-
dency arcs. To do so, for each pre-existing label
X in the training set, we create two labels Xl and
Xr. The parser is then trained on a modified ver-
sion of the training set where leftward links orig-
inally labelled X are labelled Xl, and rightward
links originally labelled X are labelled Xr. Thus,
the output of the parser on a new sentence will be
an undirected graph where each edge has a label
with an annotation indicating whether the recon-
struction process should prefer to link the pair of
nodes with a leftward or a rightward arc. We can
then assign costs to our minimum branching algo-
rithm so that it will return a tree agreeing with as
many such annotations as possible.
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To do this, we call A1+(U) ⊆ A1(U) the set
of arcs in A1(U) that agree with the annotations,
i.e., arcs (i, j) ∈ A1(U) where either i < j and
i, j is labelledXr inU , or i > j and i, j is labelled
Xl in U . We callA1−(U) the set of arcs inA1(U)
that disagree with the annotations, i.e.,A1−(U) =
A1(U)\A1+(U). And we assign costs as follows:

c(i, j)


1 if (i, j) ∈ A1+(U),
2 if (i, j) ∈ A1−(U),
2n if (i, j) ∈ A2(U) ∧ (i, j) 6∈ A1(U).

where n is the length of the string.
With these costs, the minimum branching algo-

rithm will find a tree which agrees with as many
annotations as possible. Additional arcs from the
root not corresponding to any edge in the output
of the parser (i.e. arcs inA2(U) but not inA1(U))
will be used only if strictly necessary to guarantee
connectedness, this is implemented by the high
cost for these arcs.

While this may be the simplest cost assignment
to implement label-based reconstruction, we have
found that better empirical results are obtained if
we give the algorithm more freedom to create new
arcs from the root, as follows:

c(i, j)


1 if (i, j) ∈ A1+(U) ∧ (i, j) 6∈ A2(U),
2 if (i, j) ∈ A1−(U) ∧ (i, j) 6∈ A2(U),
2n if (i, j) ∈ A2(U).

While the cost of arcs from the dummy root is
still 2n, this is now so even for arcs that are in the
output of the undirected parser, which had cost 1
before. Informally, this means that with this con-
figuration the postprocessor does not “trust” the
links from the dummy root created by the parser,
and may choose to change them if it is conve-
nient to get a better agreement with label anno-
tations (see Figure 4 for an example of the dif-
ference between both cost assignments). We be-
lieve that the better accuracy obtained with this
criterion probably stems from the fact that it is bi-
ased towards changing links from the root, which
tend to be more problematic for transition-based
parsers, while respecting the parser output for
links located deeper in the dependency structure,
for which transition-based parsers tend to be more
accurate (McDonald and Nivre, 2007).

Note that both variants of label-based recon-
struction have the property that, if the undirected
parser produces the correct edges and labels for a
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Figure 4: a) An undirected graph obtained by the
parser with the label-based transformation, b) and c)
The dependency graph obtained by each of the variants
of the label-based reconstruction (note how the second
variant moves an arc from the root).

given sentence, then the obtained directed tree is
guaranteed to be correct (as it will simply be the
tree obtained by decoding the label annotations).

5 Experiments

In this section, we evaluate the performance of the
undirected planar, 2-planar and Covington parsers
on eight datasets from the CoNLL-X shared task
(Buchholz and Marsi, 2006).

Tables 1, 2 and 3 compare the accuracy of the
undirected versions with naive and label-based re-
construction to that of the directed versions of
the planar, 2-planar and Covington parsers, re-
spectively. In addition, we provide a comparison
to well-known state-of-the-art projective and non-
projective parsers: the planar parsers are com-
pared to the arc-eager projective parser by Nivre
(2003), which is also restricted to planar struc-
tures; and the 2-planar parsers are compared with
the arc-eager parser with pseudo-projective trans-
formation of Nivre and Nilsson (2005), capable of
handling non-planar dependencies.

We use SVM classifiers from the LIBSVM
package (Chang and Lin, 2001) for all the lan-
guages except Chinese, Czech and German. In
these, we use the LIBLINEAR package (Fan et
al., 2008) for classification, which reduces train-
ing time for these larger datasets; and feature
models adapted to this system which, in the case
of German, result in higher accuracy than pub-
lished results using LIBSVM.
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The LIBSVM feature models for the arc-eager
projective and pseudo-projective parsers are the
same used by these parsers in the CoNLL-X
shared task, where the pseudo-projective version
of MaltParser was one of the two top performing
systems (Buchholz and Marsi, 2006). For the 2-
planar parser, we took the feature models from
Gómez-Rodrı́guez and Nivre (2010) for the lan-
guages included in that paper. For all the algo-
rithms and datasets, the feature models used for
the undirected parsers were adapted from those of
the directed parsers as described in Section 3.1.4

The results show that the use of undirected
parsing with label-based reconstruction clearly
improves the performance in the vast majority of
the datasets for the planar and Covington algo-
rithms, where in many cases it also improves upon
the corresponding projective and non-projective
state-of-the-art parsers provided for comparison.
In the case of the 2-planar parser the results are
less conclusive, with improvements over the di-
rected versions in five out of the eight languages.

The improvements in LAS obtained with label-
based reconstruction over directed parsing are sta-
tistically significant at the .05 level5 for Danish,
German and Portuguese in the case of the pla-
nar parser; and Czech, Danish and Turkish for
Covington’s parser. No statistically significant de-
crease in accuracy was detected in any of the al-
gorithm/dataset combinations.

As expected, the good results obtained by the
undirected parsers with label-based reconstruc-
tion contrast with those obtained by the variants
with root-based reconstruction, which performed
worse in all the experiments.

6 Discussion
We have presented novel variants of the planar
and 2-planar transition-based parsers by Gómez-
Rodrı́guez and Nivre (2010) and of Covington’s
non-projective parser (Covington, 2001; Nivre,
2008) which ignore the direction of dependency
links, and reconstruction techniques that can be
used to recover the direction of the arcs thus pro-
duced. The results obtained show that this idea
of undirected parsing, together with the label-

4All the experimental settings and feature models used
are included in the supplementary material and also available
at http://www.grupolys.org/˜cgomezr/exp/.

5Statistical significance was assessed using Dan Bikel’s
randomized comparator: http://www.cis.upenn.
edu/˜dbikel/software.html

based reconstruction technique of Section 4.2, im-
proves parsing accuracy on most of the tested
dataset/algorithm combinations, and it can out-
perform state-of-the-art transition-based parsers.

The accuracy improvements achieved by re-
laxing the single-head constraint to mitigate er-
ror propagation were able to overcome the er-
rors generated in the reconstruction phase, which
were few: we observed empirically that the dif-
ferences between the undirected LAS obtained
from the undirected graph before the reconstruc-
tion and the final directed LAS are typically be-
low 0.20%. This is true both for the naive and
label-based transformations, indicating that both
techniques are able to recover arc directions accu-
rately, and the accuracy differences between them
come mainly from the differences in training (e.g.
having tentative arc direction as part of feature
information in the label-based reconstruction and
not in the naive one) rather than from the differ-
ences in the reconstruction methods themselves.

The reason why we can apply the undirected
simplification to the three parsers that we have
used in this paper is that their LEFT-ARC and
RIGHT-ARC transitions have the same effect ex-
cept for the direction of the links they create.
The same transformation and reconstruction tech-
niques could be applied to any other transition-
based dependency parsers sharing this property.
The reconstruction techniques alone could po-
tentially be applied to any dependency parser
(transition-based or not) as long as it can be some-
how converted to output undirected graphs.

The idea of parsing with undirected relations
between words has been applied before in the
work on Link Grammar (Sleator and Temperley,
1991), but in that case the formalism itself works
with undirected graphs, which are the final out-
put of the parser. To our knowledge, the idea of
using an undirected graph as an intermediate step
towards obtaining a dependency structure has not
been explored before.
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Planar UPlanarN UPlanarL MaltP
Lang. LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p)
Arabic 66.93 (67.34) 77.56 (77.22) 65.91 (66.33) 77.03 (76.75) 66.75 (67.19) 77.45 (77.22) 66.43 (66.74) 77.19 (76.83)
Chinese 84.23 (84.20) 88.37 (88.33) 83.14 (83.10) 87.00 (86.95) 84.51* (84.50*) 88.37 (88.35*) 86.42 (86.39) 90.06 (90.02)
Czech 77.24 (77.70) 83.46 (83.24) 75.08 (75.60) 81.14 (81.14) 77.60* (77.93*) 83.56* (83.41*) 77.24 (77.57) 83.40 (83.19)
Danish 83.31 (82.60) 88.02 (86.64) 82.65 (82.45) 87.58 (86.67*) 83.87* (83.83*) 88.94* (88.17*) 83.31 (82.64) 88.30 (86.91)
German 84.66 (83.60) 87.02 (85.67) 83.33 (82.77) 85.78 (84.93) 86.32* (85.67*) 88.62* (87.69*) 86.12 (85.48) 88.52 (87.58)
Portug. 86.22 (83.82) 89.80 (86.88) 85.89 (83.82) 89.68 (87.06*) 86.52* (84.83*) 90.28* (88.03*) 86.60 (84.66) 90.20 (87.73)
Swedish 83.01 (82.44) 88.53 (87.36) 81.20 (81.10) 86.50 (85.86) 82.95 (82.66*) 88.29 (87.45*) 82.89 (82.44) 88.61 (87.55)
Turkish 62.70 (71.27) 73.67 (78.57) 59.83 (68.31) 70.15 (75.17) 63.27* (71.63*) 73.93* (78.72*) 62.58 (70.96) 73.09 (77.95)

Table 1: Parsing accuracy of the undirected planar parser with naive (UPlanarN) and label-based (UPlanarL)
postprocessing in comparison to the directed planar (Planar) and the MaltParser arc-eager projective (MaltP)
algorithms, on eight datasets from the CoNLL-X shared task (Buchholz and Marsi, 2006): Arabic (Hajič et al.,
2004), Chinese (Chen et al., 2003), Czech (Hajič et al., 2006), Danish (Kromann, 2003), German (Brants et
al., 2002), Portuguese (Afonso et al., 2002), Swedish (Nilsson et al., 2005) and Turkish (Oflazer et al., 2003;
Atalay et al., 2003). We show labelled (LAS) and unlabelled (UAS) attachment score excluding and including
punctuation tokens in the scoring (the latter in brackets). Best results for each language are shown in boldface,
and results where the undirected parser outperforms the directed version are marked with an asterisk.

2Planar U2PlanarN U2PlanarL MaltPP
Lang. LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p)
Arabic 66.73 (67.19) 77.33 (77.11) 66.37 (66.93) 77.15 (77.09) 66.13 (66.52) 76.97 (76.70) 65.93 (66.02) 76.79 (76.14)
Chinese 84.35 (84.32) 88.31 (88.27) 83.02 (82.98) 86.86 (86.81) 84.45* (84.42*) 88.29 (88.25) 86.42 (86.39) 90.06 (90.02)
Czech 77.72 (77.91) 83.76 (83.32) 74.44 (75.19) 80.68 (80.80) 78.00* (78.59*) 84.22* (84.21*) 78.86 (78.47) 84.54 (83.89)
Danish 83.81 (83.61) 88.50 (87.63) 82.00 (81.63) 86.87 (85.80) 83.75 (83.65*) 88.62* (87.82*) 83.67 (83.54) 88.52 (87.70)
German 86.28 (85.76) 88.68 (87.86) 82.93 (82.53) 85.52 (84.81) 86.52* (85.99*) 88.72* (87.92*) 86.94 (86.62) 89.30 (88.69)
Portug. 87.04 (84.92) 90.82 (88.14) 85.61 (83.45) 89.36 (86.65) 86.70 (84.75) 90.38 (87.88) 87.08 (84.90) 90.66 (87.95)
Swedish 83.13 (82.71) 88.57 (87.59) 81.00 (80.71) 86.54 (85.68) 82.59 (82.25) 88.19 (87.29) 83.39 (82.67) 88.59 (87.38)
Turkish 61.80 (70.09) 72.75 (77.39) 58.10 (67.44) 68.03 (74.06) 61.92* (70.64*) 72.18 (77.46*) 62.80 (71.33) 73.49 (78.44)

Table 2: Parsing accuracy of the undirected 2-planar parser with naive (U2PlanarN) and label-based (U2PlanarL)
postprocessing in comparison to the directed 2-planar (2Planar) and MaltParser arc-eager pseudo-projective
(MaltPP) algorithms. The meaning of the scores shown is as in Table 1.

Covington UCovingtonN UCovingtonL
Lang. LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p)
Arabic 65.17 (65.49) 75.99 (75.69) 63.49 (63.93) 74.41 (74.20) 65.61* (65.81*) 76.11* (75.66)
Chinese 85.61 (85.61) 89.64 (89.62) 84.12 (84.02) 87.85 (87.73) 86.28* (86.17*) 90.16* (90.04*)
Czech 78.26 (77.43) 84.04 (83.15) 74.02 (74.78) 79.80 (79.92) 78.42* (78.69*) 84.50* (84.16*)
Danish 83.63 (82.89) 88.50 (87.06) 82.00 (81.61) 86.55 (85.51) 84.27* (83.85*) 88.82* (87.75*)
German 86.70 (85.69) 89.08 (87.78) 84.03 (83.51) 86.16 (85.39) 86.50 (85.90*) 88.84 (87.95*)
Portug. 84.73 (82.56) 89.10 (86.30) 83.83 (81.71) 87.88 (85.17) 84.95* (82.70*) 89.18* (86.31*)
Swedish 83.53 (82.76) 88.91 (87.61) 81.78 (81.47) 86.78 (85.96) 83.09 (82.73) 88.11 (87.23)
Turkish 64.25 (72.70) 74.85 (79.75) 63.51 (72.08) 74.07 (79.10) 64.91* (73.38*) 75.46* (80.40*)

Table 3: Parsing accuracy of the undirected Covington non-projective parser with naive (UCovingtonN) and
label-based (UCovingtonL) postprocessing in comparison to the directed algorithm (Covington). The meaning
of the scores shown is as in Table 1.

74
27



References
Susana Afonso, Eckhard Bick, Renato Haber, and Di-

ana Santos. 2002. “Floresta sintá(c)tica”: a tree-
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UNDIRECTED DEPENDENCY PARSING
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Dependency parsers, which are widely used in natural language processing tasks, employ a representation of
syntax in which the structure of sentences is expressed in the form of directed links (dependencies) between their
words. In this article, we introduce a new approach to transition-based dependency parsing in which the parsing
algorithm does not directly construct dependencies, but rather undirected links, which are then assigned a direction
in a postprocessing step. We show that this alleviates error propagation, because undirected parsers do not need to
observe the single-head constraint, resulting in better accuracy.

Undirected parsers can be obtained by transforming existing directed transition-based parsers as long as
they satisfy certain conditions. We apply this approach to obtain undirected variants of three different parsers (the
Planar, 2-Planar, and Covington algorithms) and perform experiments on several data sets from the CoNLL-X
shared tasks and on the Wall Street Journal portion of the Penn Treebank, showing that our approach is successful
in reducing error propagation and produces improvements in parsing accuracy in most of the cases and achieving
results competitive with state-of-the-art transition-based parsers.
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1. INTRODUCTION

Syntactic parsing is the process of determining the grammatical structure of a sentence:
Given an input sentence, a parsing algorithm (or parser) will analyze it to output a repre-
sentation of its underlying structure. The format of this representation and the information
it contains depend on the particular syntactic theory used by the parser. In constituency
parsers, or phrase structure parsers, sentences are analyzed by breaking them down into
meaningful parts called constituents, which are in turn divided into smaller constituents.
The result of such an analysis is represented with a constituency tree, such as the one shown
in Figure 1. On the other hand, in dependency parsers, the structure of the sentence is repre-
sented by a set of directed links (called dependencies) between its words, forming a graph
such as the one in Figure 2.

Dependency parsing has gained wide popularity in the natural language processing
community, and it has recently been applied to a wide range of problems, such as machine
translation (Ding and Palmer 2005; Shen, Xu, and Weischedel 2008; Xu et al. 2009;
Katz-Brown et al. 2011), textual entailment recognition (Herrera, Peñas, and Verdejo 2005;
Berant, Dagan, and Goldberger 2010), relation extraction (Culotta and Sorensen 2004;
Fundel, Küffner, and Zimmer 2006; Miyao et al. 2009; Katrenko, Adriaans, and van
Someren 2010), question answering (Cui et al. 2005; Comas, Turmo, and Márquez 2010),
opinion mining (Joshi and Penstein-Rosé 2009), or learning for game artificial intelligence
agents (Branavan, Silver, and Barzilay 2012).

Address correspondence to Carlos Gómez-Rodríguez, Departamento de Computación, Facultad de Informática,
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FIGURE 1. Constituency tree for an English sentence.

FIGURE 2. Dependency tree for an English sentence.

Some important advantages of dependency representations over constituency trees when
applied to natural language processing tasks are that they provide a more explicit representa-
tion of the semantic information that is useful for applications (e.g., the subject and object of
a sentence in Figure 2 are explicitly represented in its dependency graph), they do not need
intermediate nodes (nonterminals) and hence allow for simpler and more efficient parsing
algorithms, and they represent discontinuous linguistic phenomena caused by long-range
dependencies or free word order in a natural way by using crossing dependencies.

While there has been research in grammar-driven dependency parsing, where formal
grammatical rules are used to define the set of dependency structures that can appear in
a language (Tapanainen and Järvinen 1997; Lombardo and Lesmo 1996), most current
dependency parsers are data-driven, i.e., they use learning techniques to automatically infer
linguistic knowledge from annotated corpora, which can then be used to parse new sentences
without the need for an explicit grammar.

In particular, the vast majority of data-driven dependency parsers that have been defined
in recent years can be described as being either graph-based or transition-based depen-
dency parsers (Zhang and Clark 2008; McDonald and Nivre 2011). Graph-based parsing
uses global optimization on models that score dependency graphs (Eisner 1996; McDonald
et al. 2005). In transition-based parsing, which is the focus of this article, dependency
graphs are built by sequences of actions by an automaton that transitions between parser
states, and each action is scored individually. These scores are used to find a suitable
sequence of actions for each given sentence, typically by greedy deterministic search or
beam search (Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004a; Nivre 2008).
Some key advantages of transition-based parsers are their high efficiency (many of them
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have linear time complexity, while still providing state-of-the-art accuracy) and the pos-
sibility of easily incorporating arbitrarily rich feature models, including nonlocal features
(Zhang and Nivre 2011).

However, it has been shown by McDonald and Nivre (2007) that transition-based parsers
suffer from error propagation: As the generation of a dependency parse for a sentence is
modeled as a sequential process, an early erroneous decision may place the parser into an
incorrect state, causing more errors later on. In particular, one source of error propaga-
tion in transition-based parsers is the need to enforce the single-head constraint, i.e., the
common restriction in dependency syntax that forbids each node from having more than one
incoming arc. For instance, if we are parsing the sentence in Figure 2 with a transition-based
parser that uses greedy deterministic search and we mistakenly make a decision to build an
arc from a3 to tree5 instead of the correct dependency from tree5 to a3, we will miss not
only this dependency but also the one from is2 to tree5, because we will be in a parser state
where the single-head constraint makes it illegal to create it (because of not allowing node
tree5 to have two incoming arcs).

In this article, we introduce a new approach to transition-based parsing that improves
accuracy by alleviating this kind of error propagation. To do so, we build novel undirected
dependency parsers by modifying existing transition-based dependency parsers—namely
the Planar and 2-Planar parsers by Gómez-Rodríguez and Nivre (2013) and the non-
projective list-based parser by Nivre (2008), which is a variant of the algorithm by
Covington (2001).

The obtained undirected parsers are algorithms that build an undirected graph (such
as the one in Figure 3) rather than a dependency graph. This means that the single-head
constraint need not be observed during the parsing process, because the directed notions
of head and dependent (or of incoming and outgoing arcs) are lost in undirected graphs.
Therefore, this gives the parser more freedom, and can prevent situations where enforcing
the constraint leads to error propagation, such as the previous example.

On the other hand, these new algorithms have the obvious disadvantage that their output
is an undirected graph and not a dependency graph. We will need a postprocessing step to
recover the direction of the dependencies, generating a valid dependency structure. Thus,
some complexity is moved from the transition-based parsing process to this postprocessing
step, and each undirected parser will outperform the original directed version only if the
simplification of the parsing phase is able to avoid more errors than are generated in the
postprocessing step. Fortunately, as we will see in Section 5, this is in fact the case for most
of the algorithm-data set combinations that we tried, showing that the undirected parsing
approach is useful to improve parsing accuracy.

The remainder of this article is structured as follows: Section 2 introduces common
notation and concepts regarding transition-based dependency parsing, which will be used
throughout this article. Section 3 describes a technique to transform transition-based depen-
dency parsers satisfying certain conditions into undirected parsers, and applies it to the
Planar, 2-Planar, and Covington algorithms. In Section 4, we discuss two different postpro-
cessing techniques that can be used to recover dependency trees from undirected graphs.

FIGURE 3. Undirected dependency graph for the sentence in Figure 2.
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Section 5 puts the ideas in previous sections into practice and presents an empirical study of
the accuracy of undirected dependency parsers compared with their directed counterparts,
including an evaluation of undirected accuracy measures and direction errors to compare
both postprocessing approaches. Section 6 presents an error analysis to see the effect of
undirected parsing on error propagation, and Section 7 discusses related work. Finally,
Section 8 concludes this article with a discussion of the results.

2. TRANSITION-BASED DEPENDENCY PARSING

We now introduce some definitions and notation concerning transition-based
dependency parsing, which will serve as a basis to present our undirected parsing approach.

2.1. Dependency Parsing and Dependency Graphs

A dependency parser is a system that analyzes natural language sentences and outputs
a representation of their syntactic structure in the form of a dependency graph, such as the
one shown in Figure 2. More formally, a dependency graph can be defined as follows:

Definition 1. Letw D w1 : : : wn be an input sentence. Given a setL of labels, a dependency
graph for w1 : : : wn is a labeled directed graph G D .Vw ; A/, where Vw D ¹0; : : : ; nº is the
set of nodes, and A � Vw � L � Vw is the set of labeled directed arcs.

Each of the nodes in Vw encodes the position of a token in w, except for node 0 that is
a dummy node used to mark the root of the sentence and cannot have incoming arcs. Each
of the arcs in A encodes a dependency relation between two tokens. We will write the arc

.i; l; j / 2 A as i
l
! j , which will also be called a dependency link labeled l from i to

j . We then say that i is the head of j and, conversely, that j is a syntactic dependent of
i . The labels on dependency links are typically used to represent their associated syntactic
functions, such as SBJ for subject in Figure 2.

Given a dependency graph G D .Vw ; A/, we will write i ! j 2 A if there is a
dependency link from i to j , regardless of its label. We will write i !? j 2 A if there
is a (possibly empty) path from i to j and i $? j 2 A if there is a (possibly empty)
path connecting i and j in the undirected graph underlying G. When using these notational
conventions, we will omit the references to A when the relevant set of edges is clear from
the context.

Most dependency-based syntactic formalisms do not allow arbitrary dependency graphs
as syntactic representations. Instead, they are typically restricted to acyclic graphs where
each node has at most one head. Such dependency graphs are called dependency forests.

Definition 2. A dependency graph G is said to be a dependency forest if it satisfies the
following:

(1) single-head constraint: if i ! j , then there is no k ¤ i such that k ! j .
(2) acyclicity constraint: if i !? j , then there is no arc j ! i .

Nodes that have no head in a dependency forest are called roots. Apart from the previous
two constraints, some dependency formalisms add the additional constraint that a depen-
dency forest can have only one root (or, equivalently, that it must be connected). A forest of
this form is called a dependency tree.

In this article, we will work with dependency parsers that output dependency forests,
i.e., that enforce the single-head and acyclicity constraints. While we do not require the
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parsers to explicitly enforce connectedness, we note that any dependency forest can be easily
converted to a dependency tree (and thus made connected) by linking the dummy root node
0 as the parent of all its other root nodes. Therefore, from now on, we will refer to the outputs
produced and the training data used by our parsers as dependency trees, keeping in mind
that some of these trees may be a representation of dependency analyses that are forests.

2.2. Transition Systems

In a transition-based dependency parser, the dependency analysis for an input sentence
is built by a nondeterministic state machine that reads the input sentence and builds depen-
dency arcs. Following the framework of Nivre (2008), this nondeterministic automaton is
called a transition system and is defined as follows:

Definition 3. A transition system for dependency parsing is a tuple S D .C; T; cs; Ct /,
where

(1) C is a set of possible parser configurations;
(2) T is a finite set of transitions, which are partial functions t W C ! C ;
(3) cs is a total initialization function that maps each input string w to a unique initial

configuration cs.w/; and
(4) Ct � C is a set of terminal configurations.

Although the specific nature of configurations varies among parsers, they are required
to contain at least a setA of dependency arcs and a bufferB of unread words, which initially
holds all the words in the input sentence. A transition-based parser will be able to read input
words by popping them from the buffer and to create dependency arcs by adding them to
the set A.

Given an input string w D w1 : : : wn, each of the sequences of configurations that the
transition system S can traverse by sequentially applying transitions starting from the initial
configuration cs.w/ and ending at some terminal configuration ct 2 Ct is called a transition
sequence forw in S . The parse assigned tow by a transition sequence ending at the terminal
configuration ct is the dependency graphG D .¹0; : : : ; nº; Act /, where Act is the set of arcs
stored in the configuration ct .

Note that, from a theoretical standpoint, it is possible to define a transition system such
that no transition sequences exist for a given sentence w. However, this is usually avoided
in practice, because robustness (the ability to terminate producing a parse for every possible
input) is seen as a desirable quality in data-driven natural language parsers. Therefore, all
the transition systems that we will use and define in this article have the property that there
is at least one (and typically more than one) transition sequence for every sentence w.

To use a transition system to obtain the best dependency analysis for a given sentence,
we need to have a mechanism that will select the most suitable among all the transition
sequences that the system allows for that sentence. A standard method to achieve this is by
using a classifier to select the best transition to execute at each configuration.

To do so, we define an oracle for the transition system S D .C; T; cs; Ct / as a function
o W C ! T ; i.e., an oracle is a function that selects a single transition to take at each
configuration and thus can be used to determinize the parsing process. Given a training
treebank containing manually annotated dependency trees for sentences, we train a classifier
to approximate an oracle by building a canonical transition sequence for each tree in the
treebank and using each of the configurations in the sequence and the corresponding chosen
transition as a training instance.
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Then, to parse a sentence w, we only need to initialize the parser to the initial configu-
ration cs.w/ and iteratively apply the transitions suggested by the classifier until a terminal
configuration is reached. This results in a parser that performs a greedy deterministic search
for the best transition sequence, one of the most widely used approaches in transition-
based parsing (Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004b; Attardi
2006; Nivre 2008; Goldberg and Elhadad 2010; Tratz and Hovy 2011; Gómez-Rodríguez
and Nivre 2013), although other optimization and search strategies, such as beam search,
can also be used (Johansson and Nugues 2006; Titov and Herderson 2007; Zhang and
Clark 2008; Huang, Jiang, and Liu 2009; Huang and Sagae 2010; Zhang and Nivre 2011;
Hayashi et al. 2012).

2.3. An Example Transition System: The Planar Transition System

A simple example of a practical transition system for dependency parsing is the Planar
transition system (Gómez-Rodríguez and Nivre 2010, 2013). The Planar parser is an exten-
sion of the well-known arc-eager projective parser by Nivre (2003), which can handle all
dependency trees that are planar, i.e., those whose arcs can be drawn above the words (as
in Figure 2) in such a way that no two arcs cross. In contrast, the arc-eager parser by Nivre
(2003) can only build so-called projective trees, which is a slightly more restricted set of
syntactic structures (Gómez-Rodríguez and Nivre 2013).

The Planar transition system is a transition system S D .C; T; cs; Ct / such that

� C is the set of all configurations of the form c D h�;B;Ai, where � and B are disjoint
lists of nodes from Vw (for some input w), and A is a set of dependency arcs over Vw .
ListB , called the buffer, is used to hold nodes corresponding to input words that have not
yet been read. List � , called the stack, contains nodes for words that have already been
read but still have dependency links pending to be created. For perspicuity, we will use
the notation � ji to denote a stack with top i and tail � and the notation j jB to denote a
buffer with top j and tail B . The set A of dependency arcs contains the part of the output
parse that the system has constructed at each given point.

� The initial configuration is cs .w1 : : : wn/ D hŒ�; Œ1 : : : n�;;i; i.e., the buffer initially
holds the whole input string while the stack is empty.

� The set of terminal configurations is Ct D ¹h�; Œ�; Ai 2 C º; i.e., final configurations are
those where the buffer is empty, regardless of the contents of the stack.

� The set T has the following transitions:
SHIFT h�; i jB;Ai ) h� ji; B;Ai

REDUCE h� ji; B;Ai ) h�;B;Ai

LEFT-ARCl h� ji; j jB;Ai )

�
� ji; j jB;A[

²
j

l
! i

³�
only if Àk j k ! i 2 A (single-head) and i $� j 62 A (acyclicity).

RIGHT-ARCl h� ji; j jB;Ai )

�
� ji; j jB;A[

²
i
l
! j

³�
only if Àk j k ! j 2 A (single-head) and i $� j 62 A (acyclicity).

The SHIFT transition is used to read words from the input string, by moving the next
node in the buffer to the top of the stack. The LEFT-ARC and RIGHT-ARC transitions build
leftward and rightward dependency arcs, respectively, connecting the first node on the buffer
and the topmost node on the stack. Finally, the REDUCE transition is used to pop the topmost
node from the stack when we have finished building arcs to or from it.
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FIGURE 4. Transition sequence for parsing the sentence in Figure 2 using the Planar parser (LA = LEFT-
ARC and RA = RIGHT-ARC).

Figure 4 shows a transition sequence in the Planar transition system that derives the
labeled dependency graph in Figure 2.

Note that the Planar parser is a linear-time parser, because each word in the input
can be shifted and reduced at most once, and the number of arcs that can be built by the
LEFT-ARC and RIGHT-ARC transitions is strictly bounded by the number of words by the
single-head constraint.

2.4. The 2-Planar and Covington Transition Systems

The undirected dependency parsers defined and tested in this article are based on the
Planar transition system described earlier: the 2-Planar transition system (Gómez-Rodríguez
and Nivre 2010, 2013) and the version of the Covington (2001) nonprojective parser defined
by Nivre (2008). We now outline the two latter parsers briefly, and a more comprehensive
description can be found in the aforementioned references.

The 2-Planar transition system is an extension of the Planar system that can recognize
a larger set of dependency trees, called 2-planar dependency trees. A dependency tree is
said to be 2-planar if it is possible to draw it assigning one out of two colors to each of its
dependency arcs, in such a way that arcs sharing the same color do not cross. Gómez-Ro-
dríguez and Nivre (2013) have shown that well over 99% of the dependency trees in natural
language treebanks fall into this set, making this parser practical for languages that contain
a significant proportion of crossing links, so that planar and projective parsers fall short in
coverage.

To handle 2-planar structures, the 2-Planar transition system uses two stacks instead
of one, with each stack corresponding to one of the colors that can be assigned to arcs.
At each given configuration, one of the stacks is said to be active (meaning that we are
building arcs of that color), while the other is inactive. Configurations are thus of the form
c D h�0; �1; B;Ai, where �0 is the active stack and �1 the inactive stack. The initial con-
figuration is cs .w1 : : : wn/ D hŒ�; Œ�; Œ1 : : : n�;;i, and the set of terminal configurations is
Ct D ¹h�0; �1; Œ�; Ai 2 C º, analogously to the Planar transition system. The system has the
following transitions:
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SHIFT h�0; �1; i jB;Ai ) h�0ji; �1ji; B;Ai

REDUCE h�0ji; �1; B;Ai ) h�0; �1; B;Ai

LEFT-ARCl h�0ji; �1; j jB;Ai )

�
�0ji; �1; j jB;A[

²
j

l
! i

³�
only if Àk j k ! i 2 A(single-head) and i $� j 62 A (acyclicity).

RIGHT-ARCl h�0ji; �1; j jB;Ai )

�
�0ji; �1; j jB;A[

²
i
l
! j

³�
only if Àk j k ! j 2 A (single-head) and i $� j 62 A (acyclicity).

SWITCH h�0; �1; B;Ai ) h�1; �0; B;Ai.

The SHIFT transition reads words from the input string exactly as in the Planar transition
system, but in this case, their corresponding nodes are placed into both stacks. REDUCE,
LEFT-ARC, and RIGHT-ARC work similarly as in the Planar parser, but they only take into
account the active stack, ignoring the inactive one. Finally, a SWITCH transition is added
that makes the active stack inactive and vice versa, allowing us to alternate between the
two possible arc colors. Despite this added functionality, the 2-Planar parser still runs in
linear time.

On the other hand, the Covington algorithm is a transition system that runs in quadratic
time, but it has the advantage of being able to parse every possible dependency tree, with-
out restrictions such as planarity or 2-planarity. The basic algorithm was first described by
Covington (1990, 2001). Nivre (2008) implements a variant of this strategy as a transition
system, which is the version we use here.

Configurations in this system are of the form c D h�1; �2; B;Ai, where �1 and �2
are lists containing nodes associated with partially processed words, and B is the buffer of
unprocessed words. The idea of the algorithm is that, after reading each given word, we can
do a right-to-left traversal of all the nodes for already-read words in the input and create
links between them and the first node in the buffer. This traversal is implemented by moving
nodes from �1 (untraversed nodes) to �2 (already-traversed nodes). After reading each new
input word, all the nodes in both lists are moved back to �1 for a new right-to-left traversal
to start, hence the quadratic complexity.

The algorithm starts with an initial configuration cs .w1 : : : wn/ D hŒ�; Œ�; Œ1 : : : n�;;i
and will terminate in final configurations of the set Cf D ¹h�1; �2; Œ�; Ai 2 C º. The system
has the following transitions:

SHIFT h�1; �2; i jB;Ai ) h�1 � �2ji ; Œ�; B;Ai

NO-ARC h�1ji ; �2; B;Ai ) h�1; i j�2; B;Ai

LEFT-ARCl h�1ji ; �2; j jB;Ai )

�
�1; i j�2; j jB;A [

²
j

l
! i

³�
only if Àk j k ! i 2 A (single-head) and i $� j 62 A (acyclicity).

RIGHT-ARCl h�1ji ; �2; j jB;Ai )

�
�1; i j�2; j jB;A [

²
i
l
! j

³�
only if Àk j k ! j 2 A (single-head) and i $� j 62 A (acyclicity).

The SHIFT transition advances the parsing process by reading the first node in the buffer
B and inserting it at the head of a list obtained by concatenating �1 and �2, thus starting a
new right-to-left traversal to find candidate nodes to be linked to the one now heading the
buffer. This traversal is implemented by the other three transitions: NO-ARC is used when
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there is no dependency relation between the first node in the buffer and the head of the list
˛1, and it moves the head of the list ˛1 to ˛2 without creating any arcs; while LEFT-ARC
and RIGHT-ARC create a leftward (rightward) arc connecting the first node in the buffer and
the head of the list ˛1 and then move the head of ˛1 to ˛2. The traversal will end when a
new SHIFT transition is executed, signifying that no more arcs will be created involving the
first node in the buffer and the nodes in ˛1.

3. TRANSFORMING DIRECTED PARSERS INTO UNDIRECTED PARSERS

As mentioned in Section 2.2, practical implementations of transition systems use greedy
search or beam search to find the best transition sequence (and thus obtain a depen-
dency tree) for each given input. Because these strategies build transition sequences and
dependency arcs in a sequential way from the beginning of the sentence to the end, early
parsing decisions may condition and restrict later decisions, causing error propagation.
McDonald and Nivre (2007) present an empirical study whose results highlight this
phenomenon, showing that a transition-based parser tends to be more accurate than a graph-
based parser on arcs that are built early in the transition sequence, but less accurate on arcs
built later on.

In particular, one possible source of error propagation is the single-head constraint
described in Definition 2. To return a valid dependency tree, a transition system must obey
this constraint during the whole parsing process. This means that a transition that creates
a dependency arc is permissible only if its application does not violate the single-head
constraint, i.e., if it does not result in assigning more than one head to the same node. For
instance, Figure 4 shows a transition sequence for the Planar parser that correctly parses
a sample sentence, assigning it the dependency tree in Figure 2. However, in an alterna-
tive scenario where the classifier made a mistake in the eighth transition choosing to apply
RANMOD instead of the correct choice LANMOD , this would result into building a depen-
dency link from dependency4 to tree5 instead of the correct link from tree5 to dependency4.
In turn, this would lead to a situation where creating the (correct) link from is2 to tree5 would
be forbidden by the single-head constraint, as node tree5 would already have an incoming
arc. Therefore, in this example, a single erroneous choice of transition initially affecting
a single dependency arc propagates to other arcs, because of the single-head constraint,
causing at least two attachment errors in the output tree.

To remove this source of error propagation, we transform the Planar, 2-Planar, and
Covington transition systems into variants that build undirected graphs instead of directed
dependency trees. The goal of this transformation is to allow transition-based parsers to
work without needing to obey the single-head constraint. This will make these parsers less
sensitive to error propagation, because they will be able to create arcs freely at any point in
the parsing sequence, regardless of the existing arcs that have been created before.

The mentioned transformation consists in redesigning the transition systems so that they
create dependency links without a direction. In this way, it is not necessary to observe the
single-head constraint during the parsing process, because the directed concepts of head and
dependent do not apply to undirected links. As a result, the output of these new variants is
an undirected graph instead of a tree. This transformation has previously been described in
Gómez-Rodríguez and Fernández-González (2012).

3.1. The Undirected Planar, 2-Planar, and Covington Transition Systems

With the goal of obtaining undirected transition systems from the directed ones
described in Sections 2.3 and 2.4, we replace the LEFT-ARC and RIGHT-ARC transitions in
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those systems (which create directed arcs in each direction) with a new transition (ARC) that
builds an undirected link. This can be performed because, in these three transition systems,
the effect of the two directed transitions is the same except for the direction of the created
link, so that their behavior can be collapsed into one common transition: the undirected
ARC transition.

In addition to this, the configurations of the undirected transition systems must be
changed so that the arc set A is a set of undirected edges, instead of directed arcs.

Analogously to our notation for directed arcs, we will use the notation i l� j as shorthand
for an undirected edge labeled l connecting the nodes i and j .

Furthermore, because the direction of the arcs is lost in undirected graphs, the precon-
ditions of transitions that guarantee the single-head constraint are simply removed from the
systems.

If we apply these transformations and leave the Planar, 2-Planar, and Covington
transition systems otherwise unchanged, we will obtain the respective undirected variants:
the undirected Planar, the undirected 2-Planar, and the undirected Covington transition
systems. The transition set of each undirected transition system is as follows:

Undirected Planar

SHIFT h�; i jB;Ai ) h� ji; B;Ai

REDUCE h� ji; B;Ai ) h�;B;Ai

ARCl h� ji; j jB;Ai )
D
� ji; j jB;A[

°
j
l
� i
±E

only if i $� j 62 A (acyclicity).

Undirected 2-Planar

SHIFT h�0; �1; i jB;Ai ) h�0ji; �1ji; B;Ai

REDUCE h�0ji; �1; B;Ai ) h�0; �1; B;Ai

ARCl h�0ji; �1; j jB;Ai )
D
�0ji; �1; j jB;A[

°
j
l
� i
±E

only if i $� j 62 A (acyclicity).

SWITCH h�0; �1; B;Ai ) h�1; �0; B;Ai.

Undirected Covington

SHIFT h�1; �2; i jB;Ai ) h�1 � �2ji ; Œ�; B;Ai

NO-ARC h�1ji ; �2; B;Ai ) h�1; i j�2; B;Ai

ARCl h�1ji ; �2; j jB;Ai )
D
�1; i j�2; j jB;A [

°
j
l
� i
±E

only if i $� j 62 A (acyclicity).

We show in Figure 5 how the undirected Planar parser analyzes a sentence using its
own set of transitions. Note that the output of this parsing process is the undirected graph
presented in Figure 3 instead of the expected dependency tree in Figure 2. To obtain a
dependency tree as the final output of the analysis, we will need to apply a postprocessing
step, which will be described in Section 4.
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FIGURE 5. Transition sequence for parsing the sentence in Figure 3 using the undirected Planar parser.

It is worth remarking that, in order to apply this transformation to obtain an undi-
rected parser from a directed one, the original transition system must satisfy the condition
that their arc-building transitions (conventionally called LEFT-ARC and RIGHT-ARC) be
identical except for the directions of the links that they create. This condition holds in some
transition systems in the literature—-such as the three systems described earlier or the arc-
eager Directed Acyclic Graph parser for enriched dependency representations described by
Sagae and Tsujii (2008)—but not in others. For example, in the well-known arc-eager parser
by Nivre (2003), LEFT-ARC transitions pop a node from the stack in addition to creating
an arc, while RIGHT-ARC transitions instead remove the topmost buffer node and then push
the top stack node back to the buffer. One could still try to transform the arc-eager parser
into an undirected variant by converting each of its arc transitions into an undirected transi-
tion, without necessarily collapsing them into one. However, this would result into a parser
that violates the acyclicity constraint, because the original system is designed in such a way
that both constraints are enforced jointly and acyclicity is only guaranteed if the single-head
constraint is also kept. It is easy to check that this problem cannot happen in parsers where
the LEFT-ARC and RIGHT-ARC transitions are symmetrical in the manner described earlier:
In these systems, if a given graph is not parsable in the original system, then its underlying
undirected graph will not be parsable in the transformed system.

3.2. Undirected Feature Models

To implement a practical parser on top of a transition system, we need a feature model
to extract relevant information from configurations that will serve to train a classifier.
Therefore, apart from modifying the transition system, creating a practical undirected parser
necessarily implies to adapt its feature model to work with undirected graphs.

Some features usually employed in transition-based parsers depend on the direction of
the arcs that have already been created. Examples of such features are the part-of-speech
tag associated with the head of the topmost stack node or the label of the arc going from
the first node in the buffer to its leftmost dependent.1 However, because we cannot tell

1 These example features are taken from the default model for the Planar parser in version 1.5 of MaltParser (Nivre, Hall,
and Nilsson 2006).
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heads from dependents in an undirected graph, these features cannot be used to train an
undirected parser.

Therefore, we convert these features into their closest undirected versions: In the
previous examples, those would be the part-of-speech tag associated with the closer node
linked to the topmost stack node and the label of the arc that connects the first node in the
buffer to the leftmost node linked to it. Notice that now a node (topmost stack or first node
in the buffer) has neither head nor dependents, it only has some other nodes linked to it.

More formally, these are the undirected features obtained from the directed ones:

� information (e.g., part of speech, label, and lemma) about the i th node linked to a given
node (topmost stack node, topmost buffer node, etc.) on the left or on the right, and about
the associated undirected arc, typically for i D 1; 2; 3;

� information (e.g., part of speech, label, and lemma) about the closest left and right “undi-
rected siblings” of a given node, i.e., the closest node q located to the left of the given
node p such that p and q are linked to some common node r located to the right of
both, and vice versa. Note that this notion of undirected siblings does not necessarily
correspond to siblings in the directed graph: It can also capture other second-order
interactions, such as grandparents.

In addition, we create new features based on undirected relations between nodes that
provide further context information for the parser. In particular, we found that the following
features worked well in practice:

� a Boolean feature representing whether two given nodes are linked or not in the
undirected graph and a feature representing the label of the arc between them.

4. RECOVERING ARC DIRECTIONS

The transformed transition systems described in Section 3 have the drawback that the
output they produce is an undirected graph, such as the one in Figure 3, rather than a proper
dependency tree. To use these systems and still obtain a directed dependency tree as the final
output of the parsing process, we will apply a postprocessing step to assign an orientation
to the undirected graph (i.e., choose a direction for each of its edges), in such a way that the
single-head constraint is obeyed and the result is a valid dependency tree.

For this purpose, we have developed two different reconstruction techniques to recover
arc directions from the undirected graph, previously described in less detail in Gómez-Ro-
dríguez and Fernández-González (2012). The first one, called naive reconstruction, is based
on using the dummy root node to decide the direction that should be assigned to edges, by
choosing the unique orientation of the undirected graph obtained by traversing it from the
dummy root. The second technique, label-based reconstruction, consists of using the edge
labels generated by the transition system to assign a preferred direction to each undirected
edge and then choosing the orientation that conforms to as many preferred directions as
possible (note that it will not always be possible to conform to the preferred directions of all
the arcs, as that may generate a graph violating the single-head constraint).

To describe these reconstruction techniques more formally and view them under a
common framework, we can formulate the problem of recovering arc directions as an opti-
mum branching (i.e., directed minimum spanning tree) problem on a weighted graph. Given
the undirected graph U produced by an undirected parser, we consider its isomorphic sym-
metric directed graph, i.e., the directed graph which has an arc for each of both possible
directions of an undirected edge inU . Each directed spanning tree of that graph corresponds
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to an orientation of U . Then, reconstruction techniques can be implemented by assigning
weights to each of the arcs in the symmetric graph, so that they encode a criterion to prefer
certain orientations of arcs over others, and then using an optimum branching algorithm to
find the minimum spanning tree. Different criteria for assigning weights to arcs will produce
different reconstruction techniques.

More formally, let U D .Vw ; E/ be the undirected graph produced by some undirected
parser2 for an input string w (we omit labels for simplicity and readability).

We define the following sets of arcs:

A1.U / D ¹.i; j / j j ¤ 0 ^ ¹i; j º 2 Eº;

A2.U / D ¹.0; i/ j i 2 Vwº:

The set A1.U / contains the two possible orientations of each edge in U (i.e., the arcs
in the symmetric directed graph isomorphic to U ) except for those arcs that would have
node 0 as a dependent, which we disallow because we are using that node as a dummy root,
and therefore, it cannot be assigned a head. On the other hand, the set A2.U / contains all
the possible arcs that link the nodes in Vw as dependents of the dummy root node, regard-
less of whether their underlying undirected edges were present in U or not. This is so that
the reconstruction techniques defined under this framework are allowed to link unattached
tokens to the dummy root.

With these arc sets, we define a graph D.U / containing all the candidate arcs that we
will consider when reconstructing a dependency structure from U :

D.U / D ¹Vw ; A.U / D A1.U / [ A2.U /º :

The reconstruction process for an undirected graph U consists of finding an optimum
branching (i.e., a directed minimum spanning tree) for a weighted directed graph obtained
from assigning a cost c.i; j / to each arc .i; j / of the graph D.U /; i.e., we are looking for a
dependency tree T D .Vw ; AT � A.U // that minimizes

P
.i;j /2At

c.i; j /.
Such a tree can be calculated using well-known algorithms for the optimum branching

problem, such as the Chu–Liu–Edmonds algorithm (Chu and Liu 1965; Edmonds 1967).
In this particular case, we can take advantage of the fact that the graph D.U / has O.n/
nodes and O.n/ arcs for a string of length n, and use the implementation by Tarjan (1977)
to achieve a time complexity of O.n log sn/.

The different reconstruction techniques can be defined by establishing different criteria
to assign the costs c.i; j / to the arcs in A.U /.

Note that, in practice, the impact of the reconstruction process in overall parsing time
is negligible. This is because the optimum branching algorithm does not perform any
classification and hence does not need to extract features from configurations, which is
the bottleneck of transition-based parsers (Bohnet 2010; Volokh 2013). As a result, when
applying undirected parsing to a linear-time parsing algorithm such as the Planar and 2-
Planar parsers, the total observed runtimes grow linearly with sentence length, in spite of
the theoretical O.n logn/ complexity of the reconstruction algorithm.

2 Note that, while the approach taken in this article is to obtain undirected parsers by transforming directed parsers, it
would also be possible in theory to design an undirected parser from scratch and apply the same reconstruction techniques to it.
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4.1. Naive Reconstruction

A first, a very simple reconstruction technique is based on the fact that a rooted tree
is implicitly directed; thus, if we train the undirected parser to obtain trees and consider
the dummy node 0 as their root, we will directly obtain a directed dependency structure.
In terms of the generic framework described earlier, this reconstruction can be defined by
assigning costs to the arcs of D.U / as follows:

c.i; j /

²
1 if .i; j / 2 A1.U /;
2 if .i; j / 2 A2.U / ^ .i; j / 62 A1.U /:

This criterion assigns the same cost to both the orientations of each undirected edge in
U and a higher cost to attaching any node to the dummy root that was not directly linked
to it in U . Note that the particular values that we have assigned to the costs .1 and 2/ are
arbitrary: We can choose any other pair of values for the cost of the arcs as long as the
second value is larger than the first one. The resulting optimum branching does not change:
It comes from maximizing the number of arcs that come from the cheaper set .A1.U //.

To obtain satisfactory results with this approach, we must train the undirected parser
to explicitly build undirected arcs from the dummy root node to the root word(s) of each
sentence using arc transitions. This means that, if our training treebank contains forests, we
need to transform them into trees by explicitly linking each of their roots as dependents of
the node 0, as explained at the end of Section 2.1.

Under this assumption, if no classification errors are made, the undirected graph U
output by the undirected parser will always be an undirected tree, and the minimum spanning
tree will correspond to the unique orientation of U making its edges point away from the
dummy root.3 It is easy to see that this orientation must be the correct parse, because any
other orientation violates the assumption that node 0 is a root.

This naive reconstruction technique has the advantage of being very simple, while
guaranteeing that the correct parse will be recovered if the undirected parser is able to
correctly generate its underlying undirected tree. However, this approach lacks robustness,
because it decides the direction of all the arcs in the final output based on which node(s)
are chosen as sentence heads and linked to the dummy root. This means that a parsing error
affecting the undirected edges that involve the root may propagate and result in many depen-
dency links being erroneous. For this reason, this approach for recovering arc directions will
not produce good empirical results, as will be seen in Section 5. Fortunately, we can define a
more robust criterion where the orientation of arcs is defined in a more distributed manner,
without being so sensible to the edges involving the root.

4.2. Label-Based Reconstruction

To obtain a more robust and effective reconstruction technique, we first apply a simple
transformation to the training corpus so that arcs will have their direction encoded as a part
of their label. To do so, if a leftward arc in the training set is labeled X , we relabel it Xl ,
meaning “a leftward arc labeled X .” If a rightward arc in the training set is labeled X , we
relabel it Xr , meaning “a rightward arc labeled X .”

3 Note that, while we previously suggested using optimum branching algorithms to find the spanning tree for the sake of
generality, in this particular case, it is not necessary to use such a generic algorithm: The spanning tree can simply be built in
O.n/ by starting a traversal from the root and orienting each arc in the sense of the traversal. However, this is only valid for
this particular reconstruction technique.
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After training the undirected parser with this modified treebank, its output for a new
sentence will be an undirected graph where each edge’s label includes an annotation indi-
cating whether the reconstruction process should prefer to link the corresponding pair of
nodes with a leftward or with a rightward arc. Note that those annotations represent pre-
ferred directions—not hard constraints—because, although in the absence of errors it would
be possible to simply use the annotations to decode the correct parse for the sentence, in
practice parsing errors can create situations where it is not possible to conform to all the
annotations without violating the single-head constraint in the directed graph resulting from
the reconstruction. In these cases, the reconstruction technique will have to decide which
annotations to follow and which have to be ignored. For this purpose, we will assign the
costs for our minimum branching algorithm so that it will return a tree agreeing with as
many annotations as possible.

To achieve this, we denote by A1C.U / � A1.U / the set of arcs in A1.U / that agree
with the annotations, i.e., arcs .i; j / 2 A1.U / where either i < j and ¹i; j º is labeled Xr
in U , or i > j and ¹i; j º is labeled Xl in U . Conversely, we call A1�.U / the set of arcs
in A1.U / that disagree with the annotations, i.e., A1�.U / D A1.U / n A1C.U /. Then, we
assign costs to the directed arcs in A.U / as follows:

c.i; j /

´
1 if .i; j / 2 A1C.U /;
2 if .i; j / 2 A1�.U /;
2n if .i; j / 2 A2.U / ^ .i; j / 62 A1.U /;

where n is the length of the string.
With these costs, the optimum branching algorithm will find a spanning tree that agrees

with as many annotations as possible, because assigning the direction that agrees with an
edge’s annotation has a lower cost than assigning the opposite direction. Additional arcs
from the root not appearing in the parsing output (i.e., arcs inA2.U /nA1.U /) can be added,
but only if this is strictly necessary to guarantee connectedness (i.e., if the graph U was
disconnected), because the cost of such an arc .2n/ is greater than the sum of costs of any
combination of arcs originating from edges in U .

Analogously to the case of the naive reconstruction, the three cost values need not be
exactly 1; 2; and 2n as chosen earlier: It is sufficient that the second value is larger than the
first, and the third value is larger than n times the second value. The latter property trivially
ensures that a spanning tree with k arcs from the third set always costs less than one with
kC1 arcs from the third set, which guarantees that this kind of arcs is only added when this
is strictly necessary to guarantee connectedness (i.e., only one such arc will be used for each
connected component that does not include the artificial root). The former property ensures
that, among the trees with a minimal number of arcs from the third set, we choose those that
minimize the number of arcs from the second set.

While this may be the simplest cost assignment to implement label-based reconstruc-
tion, we have found experimentally that better practical results are obtained if we give the
algorithm more freedom to create new arcs from the root as follows:

c.i; j /

´
1 if .i; j / 2 A1C.U / ^ .i; j / 62 A2.U /;
2 if .i; j / 2 A1�.U / ^ .i; j / 62 A2.U /;
2n if .i; j / 2 A2.U /:

The difference with the previous variant is that arcs originating from the root now have a
cost of 2n even if their underlying undirected arcs were present in the output of the undi-
rected parser. Informally, this means that the postprocessor will not trust the links from the
dummy root created by the parser and may choose to change them (at no extra cost) if this
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FIGURE 6. (a) An undirected graph obtained by the undirected parser trained with a transformed corpus
where arcs have been relabeled to specify their direction. (b) and (c) The dependency graph obtained by each of
the variants of the label-based reconstruction (note how the second variant moves an arc from the root).

is convenient to obtain a better agreement with the label annotations of the remaining arcs
(see Figure 6 for an example of the difference between both cost assignments). We believe
that the higher empirical accuracy obtained with this criterion is probably due to the fact
that it is biased toward changing links from the root, which tend to be more problematic
for transition-based parsers, while respecting the parser output as much as possible for links
located deeper in the dependency structure, for which transition-based parsers have been
shown to be more accurate (McDonald and Nivre 2007).

Note that both variants of label-based reconstruction share the property that if the undi-
rected parser produces the correct labeled undirected graph for a given sentence, then the
postprocessing will transform it into the correct parse, which is simply the one obtained by
following all the annotations in the undirected arcs.

4.3. Example

We can see how the reconstruction techniques work by going back to our running
example sentence (Figure 2). In Section 2.3, we saw that the directed Planar parser could
parse this sentence with the transition sequence shown in Figure 4. Then, at the beginning
of Section 3, we illustrated how a wrong choice by the parser could cause error propagation:
If an erroneous link from dependency4 to tree5 was created instead of the correct link from
tree5 to dependency4, the single-head constraint would then disallow creating the correct
link from is2 to tree5, causing another attachment error.
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If we parsed this sentence with the undirected Planar parser and the naive reconstruction,
this error would never happen, because the undirected parser would simply not need to
make the choice between linking dependency4 ! tree5 or dependency4  tree5. It would
simply execute an ARC transition, as in Figure 5, and produce the undirected arc between
dependency4 and tree5 that can be seen in Figure 3. The naive reconstruction technique
would then extract from this graph the correct orientation (Figure 2), which is the one where
every arc points away from the root.

Note that the naive reconstruction always guarantees that the correct directed parse will
be obtained as long as the undirected parse generates the underlying undirected arcs cor-
rectly including those originating from the dummy root, which point to the root word(s)
of the input sentence. This is because rooted trees are implicitly directed. However, if the
parser incorrectly identifies the root word of the sentence by linking the dummy root to the
wrong node, the naive reconstruction will assign the wrong direction to some of the arcs.
An example of this situation can be seen in Figure 7.

On the other hand, if instead of the naive reconstruction we used the label-based recon-
struction, the direction error in the example would translate into a labeling error in the
undirected parser: Instead of creating an undirected edge labeled NMODL between the
nodes dependency4 and tree5, the edge would be labeled NMODR, indicating a preference
for right attachment. However, this preference would not be followed by the reconstruction
technique, because there would be no possible way to conform to all the preferences at the
same time without the node tree5 getting two heads, and the only way of disobeying only
one annotation (corresponding to the minimum spanning tree, with cost 15 in the second
variant of label-based reconstruction) would be to disregard precisely that annotation and
output, again, the parse of Figure 2.

Therefore, in this particular toy example, the combination of undirected parsing and any
of the reconstruction techniques not only avoids the error propagation due to erroneously
linking from dependency4 to ! tree5 but even eliminates the original error itself during
postprocessing. Of course, not all the cases will be so favorable when applying these tech-
niques in practice (Figure 7), hence the need to evaluate them empirically to see whether
undirected parsing can improve accuracy in real-life settings.

(a)

(b)

FIGURE 7. Example of an incorrect directed graph obtained by applying the naive reconstruction when the
dummy root node was mistakenly attached. (a) The undirected graph obtained after the parsing process where
the ROOT was attached to the node This1 instead of the node is2 as appears in Figure 3 and (b) the resulting
dependency tree after applying the naive reconstruction technique, obtaining the arc from This1 to is2 rather
than the correct arc from is2 to This1 as is described in Figure 2.
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5. EXPERIMENTS

In this section, we evaluate the performance of the undirected Planar, 2-Planar, and
Covington parsers. For each transition system, we compare the accuracy of the undi-
rected versions with naive and label-based reconstructions to that of the original directed
version. In addition, we provide a comparison to well-known state-of-the-art projective and
nonprojective parsers.

To evaluate the performance of the parsers in different languages, we use the follow-
ing eight data sets from the CoNLL-X shared task: Arabic (Hajič et al. 2004), Chinese
(Chen et al. 2003), Czech (Hajič et al. 2006), Danish (Kromann 2003), German
(Brants et al. 2002), Portuguese (Afonso et al. 2002), Swedish (Nilsson, Hall, and Nivre
2005), and Turkish (Oflazer et al. 2003; Atalay, Oflazer, and Say 2003). These data sets have
been chosen for their representativity, as they cover a wide range of language families (Ger-
manic, Romance, Semitic, Sino-Tibetan, Slavic, and Turkic), annotation types (e.g., pure
dependency annotation in the case of Danish, dependencies extracted from constituents in
the case of Chinese, or from discontinuous constituents in German), and degrees of non-
projectivity (ranging from the fully projective Chinese treebank to the highly nonprojective
Czech and German data sets). Buchholz and Marsi (2006) and Havelka (2007) provide
detailed information about these and other characteristics of the CoNLL-X treebanks.

In addition to the CoNLL-X data sets, we also perform experiments on English using the
Wall Street Journal (WSJ) corpus from the well-known Penn Treebank (Marcus, Santorini,
and Marcinkiewicz 1993). We obtain dependency structures from the constituency trees in
the treebank by using the Penn2Malt converter,4 with the head-finding rules of Yamada and
Matsumoto (2003), and we follow the approach of using sections 2–21 as the training set,
23 as the development set, and 24 as the test set.

For our tests, all the algorithms were implemented in MaltParser (Nivre et al. 2006)
and trained with classifiers from the LIBSVM (Chang and Lin 2001) and LIBLINEAR
(Fan et al. 2008) packages. In particular, to reduce the training time for larger data sets, we
employed the LIBLINEAR package for Chinese, Czech, English, and German, and we used
Support Vector Machine classifiers from the LIBSVM package for the remaining languages.

The arc-eager projective and pseudo-projective parsers were trained with the LIBSVM
feature models presented in the CoNLL 2006 shared task, where the pseudo-projective ver-
sion of MaltParser was one of the two top performing systems (Buchholz and Marsi 2006).
The feature models for the 2-Planar parser were taken from Gómez-Rodríguez and Nivre
(2010) for the languages included in that paper. In the cases where no data set was available
from these sources (e.g., for English), we tuned our own feature models.

Regarding the new undirected parsers, their feature models for each algorithm and data
set were created from those of the directed parsers as described in Section 3.2.

5.1. Parsing Accuracy

To evaluate the accuracy of the undirected parsers with respect to their directed
counterparts, we score each parser on the following standard evaluation metrics:

� Labeled attachment score (LAS): the proportion of tokens (nodes) that are assigned both
the correct head and the correct dependency relation label.

� Unlabeled attachment score (UAS): the proportion of tokens (nodes) that are assigned
the correct head (regardless of the dependency relation label).

4 http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html
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TABLE 1. Parsing Accuracy of the Undirected Planar Parser with Naive (UPlanarN) and Label-Based
(UPlanarL) Postprocessing in Comparison with the Directed Planar Parser (Planar).

Planar UPlanarN UPlanarL

Language LAS UAS LAS UAS LAS UAS

Arabic 67.34 77.22 66.33 76.75 67.50 77.57
Chinese 84.20 88.33 83.10 86.95 84.50 88.35
Czech 77.70 83.24 75.60 81.14 77.93 83.41
Danish 82.60 86.64 81.94 86.33 83.83* 88.17
German 83.60 85.67 82.77 84.93 85.67* 87.69
Portuguese 83.82 86.88 83.21 86.48 84.83* 88.03
Swedish 82.44 87.36 81.10 85.86 82.66 87.45
Turkish 71.27 78.57 68.31 75.17 71.68 78.99
English (WSJ) 85.47 86.55 85.47 86.58 86.02* 87.12
Average 79.83 84.50 78.65 83.35 80.51* 85.20

Results where there is a statistically significant difference at the 0.05 level between the labeled attachment score
(LAS) of Planar and UPlanarL are marked with an asterisk and the highest labeled attachment score (LAS) and
unlabeled attachment score (UAS) for each language are rendered in bold. The last line shows macro averages
across all data sets.

In our results, we show both LAS and UAS considering every token in the input sentences,
including punctuation, as a scoring token.

In particular, Table 1 shows the results obtained by the undirected Planar parser with
respect to the original Planar parser by Gómez-Rodríguez and Nivre (2013). Table 2 com-
pares the results of the undirected 2-Planar parser with the 2-Planar parser by Gómez-Ro-
dríguez and Nivre (2013). Finally, Table 3 shows the results obtained by the undirected
Covington nonprojective parser in comparison with the directed implementation by Nivre
(2008).

The results show that the use of undirected parsing with label-based reconstruction
(UPlanarL) improves the scores of the Planar parser on all of the nine data sets tested. In
most cases, it even attains higher scores than the 2-Planar baseline parser considered, which
is remarkable if we take into account that the 2-Planar parser has more theoretical coverage
due to its support of crossing links. In the case of 2-planar parsing, applying this technique
(U2PlanarL) outperforms the LAS of the directed 2-Planar parser on all the data sets except
for Arabic and Portuguese. Finally, the undirected Covington nonprojective parser with
label-based reconstruction (UCovingtonL) outperforms the results obtained by the baseline
parser (Covington) on all the treebanks except for Portuguese and Swedish.

The improvements achieved in LAS by undirected parsers with label-based reconstruc-
tion over the directed versions are statistically significant at the 0.05 level5 for Danish,
English, German, and Portuguese for the Planar parser; English in the case of the 2-
Planar parser; and Czech, Danish, English, and Turkish in the case of the Covington parser.
Furthermore, no statistically significant decrease in accuracy was observed in any of the
algorithm/data set combinations.

5 Statistical significance was assessed using Dan Bikel’s randomized comparator: http://www.cis.upenn.edu/~dbikel/
software.html
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TABLE 2. Parsing Accuracy of the Undirected 2-Planar Parser with Naive (U2PlanarN) and Label-Based
(U2PlanarL) Postprocessing in Comparison with the Directed 2-Planar Parser (2Planar).

2Planar U2PlanarN U2PlanarL

Language LAS UAS LAS UAS LAS UAS

Arabic 67.19 77.11 66.93 77.09 66.52 76.70
Chinese 84.32 88.27 82.98 86.81 84.42 88.25
Czech 77.91 83.32 75.19 80.80 78.59 84.21
Danish 83.61 87.63 81.63 85.80 83.65 87.82
German 85.76 87.86 82.53 84.81 85.99 87.92
Portuguese 84.92 88.14 83.19 86.33 83.74 87.11
Swedish 82.18 87.43 80.71 85.68 82.25 87.29
Turkish 70.09 77.39 67.44 74.06 70.64 77.46
English (WSJ) 85.56 86.66 85.36 86.53 85.96* 87.04
Average 80.17 84.87 78.44 83.10 80.20 84.87

Results where there is a statistically significant difference at the 0.05 level between the labeled attachment score
(LAS) of 2Planar and U2PlanarL are marked with an asterisk and the highest labeled attachment score (LAS) and
unlabeled attachment score (UAS) for each language are rendered in bold. The last line shows macro averages
across all data sets.

TABLE 3. Parsing Accuracy of the Undirected Covington Nonprojective Parser with Naive (UCovingtonN)
and Label-Based (UCovingtonL) Postprocessing in Comparison with the Directed Algorithm (Covington).

Covington UCovingtonN UCovingtonL

Language LAS UAS LAS UAS LAS UAS

Arabic 65.49 75.69 62.89 72.83 65.81 75.66
Chinese 85.61 89.62 83.48 87.13 86.17 90.04
Czech 77.43 83.15 71.50 77.96 78.69* 84.16
Danish 82.89 87.06 78.90 83.32 83.85* 87.75
German 85.69 87.78 80.01 82.28 85.90 87.95
Portuguese 85.21 88.21 81.71 85.17 84.20 87.11
Swedish 82.76 87.61 81.47 85.96 82.73 87.23
Turkish 72.70 79.75 72.07 79.09 73.38* 80.40
English (WSJ) 84.33 85.44 84.24 85.33 85.73* 86.77
Average 80.23 84.92 77.36 82.12 80.72* 85.23

Results where there is a statistically significant difference at the 0.05 level between the labeled attachment score
(LAS) of Covington and UCovingtonL are marked with an asterisk and the highest labeled attachment score
(LAS) and unlabeled attachment score (UAS) for each language are rendered in bold. The last line shows macro
averages across all data sets.

As expected, the undirected parsers with naive reconstruction (UPlanarN, U2PlanarN,
and UCovingtonN) performed worse than those with label-based reconstruction in all the
experiments.

To further put these results into context, we provide a comparison of the novel undi-
rected parsers, configured with label-based reconstruction, with well-known projective and
nonprojective parsers. Table 4 compares the undirected Planar parser with the arc-eager
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TABLE 4. Parsing Accuracy of the Undirected Planar (UPlanarL) with Label-
Based Postprocessing in Comparison with the MaltParser Arc-Eager Projective
(MaltP) Algorithm.

UPlanarL MaltP

Language LAS UAS LAS UAS

Arabic 67.50 77.57 66.74 76.83
Chinese 84.50 88.35 86.39 90.02
Czech 77.93 83.41 77.57 83.19
Danish 83.83 88.17 82.64 86.91
German 85.67 87.69 85.48 87.58
Portuguese 84.83 88.03 84.66 87.73
Swedish 82.66 87.45 82.44 87.55
Turkish 71.68 78.99 70.96 77.95
English (WSJ) 86.02 87.12 86.77 87.82
Average 80.51 85.20 80.41 85.06

The last line shows macro averages across all data sets and the highest labeled
attachment score (LAS) and unlabeled attachment score (UAS) for each language
are rendered in bold.

TABLE 5. Parsing Accuracy of the Undirected 2-Planar Parser (U2PlanarL) and the Undirected Covington
Nonprojective Parser (UCovingtonL) with Label-Based Postprocessing in Comparison with the MaltParser Arc-
Eager Pseudo-Projective (MaltPP) Algorithm.

U2PlanarL UCovingtonL MaltPP

Language LAS UAS LAS UAS LAS UAS

Arabic 66.52 76.70 65.81 75.66 66.02 76.14
Chinese 84.42 88.25 86.17 90.04 86.39 90.02
Czech 78.59 84.21 78.69 84.16 78.47 83.89
Danish 83.65 87.82 83.85 87.75 83.54 87.70
German 85.99 87.92 85.90 87.95 86.62 88.69
Portuguese 83.74 87.11 84.20 87.11 84.90 87.95
Swedish 82.25 87.29 82.73 87.23 82.67 87.38
Turkish 70.64 77.46 73.38 80.40 71.33 78.44
English (WSJ) 85.96 87.04 85.73 86.77 86.77 87.82
Average 80.20 84.87 80.72 85.23 80.75 85.34

The last line shows macro averages across all data sets and the highest labeled attachment score (LAS) and
unlabeled attachment score (UAS) for each language are rendered in bold.

projective parser by Nivre (2003), a well-known algorithm that is also restricted to planar
dependency structures.6 The arc-eager parser is the default parsing algorithm in MaltParser
(Nivre et al. 2006) and is also the dependency parser used in other current systems such as

6 The arc-eager parser covers the set of projective dependency structures. Planar structures are a very mild relaxation
of projective structures, and in fact, both sets become equivalent when sentences are required to have a single root node at
position 0.
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ZPar (Zhang and Clark 2011). In addition, Table 5 shows the results of the undirected 2-
Planar and the undirected Covington algorithms compared with those of the arc-eager parser
with the pseudo-projective transformation of Nivre and Nilsson (2005), which is able to han-
dle nonplanar dependencies and is probably the most widely used method for nonprojective
transition-based parsing.

As we can see in these experiments, the undirected Planar parser obtains a better score
than the arc-eager algorithm (MaltP) on seven out of nine tests; while the accuracy of the
pseudo-projective arc-eager parser (MaltPP) is outperformed on four out of nine languages
by the undirected Covington parser, and on the Arabic, Czech and Danish data sets by the
undirected 2-Planar algorithm. Therefore, undirected parsing with label-based reconstruc-
tion can be used to improve the accuracy of parsing algorithms and produces results that are
competitive with state-of-the-art transition-based parsers.

5.2. Undirected Accuracy

The results obtained in Section 5.1 show that undirected parsing with the label-based
reconstruction is clearly beneficial for parsing accuracy, while the naive reconstruction is
not. To obtain a clearer picture of how and why this happens, we can perform an evaluation
of the parsers on undirected evaluation metrics, i.e., metrics that only take into account the
undirected graph underlying the output of each parser, ignoring arc directions. While the
standard metrics used in Section 5.1 are the most relevant for practical applications, undi-
rected metrics can provide insights into the influence of each step of undirected parsing on
the final accuracy result (i.e., how the accuracy of structural parsing is affected by modifica-
tions of feature models described in Section 3.2 and what proportion of errors are introduced
by the naive or label-based transformation that is applied afterward).

Therefore, we will now analyze the results of each parser on the following evaluation
metrics:

� Undirected LAS (ULAS): the proportion of labeled arcs that are built correctly by the

parser if we disregard direction, i.e., the proportion of arcs i
l
! j in the gold standard

annotation such that the parser produces either i
l
! j or j

l
! i .

� Undirected UAS (UUAS): the proportion of arcs that are built correctly by the parser if we

disregard both label and direction, i.e., the proportion of arcs i
l
! j in the gold standard

annotation such that the parser produces either i
l 0

! j or j
l 0

! i for some label l 0 not
necessarily equal to l .

� Labeled direction errors (LDE): the proportion of labeled arcs that are built correctly by

the parser except for their direction, i.e., the proportion of arcs i
l
! j in the gold standard

annotation such that the parser outputs the arc j
l
! i . This is trivially equivalent to the

difference between ULAS and LAS.
� Unlabeled direction errors (UDE): the proportion of arcs that are built correctly by the

parser except for their direction, disregarding labels. This is the proportion of arcs i
l
! j

in the gold standard annotation such that the parser outputs an arc of the form j
l 0

! i for
some label l 0 and is trivially equivalent to the difference between UUAS and UAS.

Tables 6, 7, and 8 show the undirected scores obtained by the directed and undirected
variants of the Planar, 2-Planar, and Covington parsers, respectively.
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A first interesting insight from the tables is that they tell us the prevalence of direction
errors, such as the one in the example of Sections 3 and 4.3, in the output of directed parsers.
As we can see in the UDE column, more than 1% of the arcs in each parser’s output is a
direction error (i.e., an arc of the form a! b that should have been b ! a); this represents
around 7.5% of the errors made by the parsers. In the majority of the cases where the parsers
make a direction error, they miss the dependency label as well, probably because there is
a strong correspondence between syntactic functions and dependency directions in most
treebanks.

Although undirected parsing can be useful in sentences where the directed parser makes
a direction error, because the undirected parser does not need to commit to a direction until
the preprocessing step, it is worth reminding that the ultimate goal of undirected parsing
is not to prevent or correct direction errors but to prevent error propagation caused by the
single-head constraint. For instance, in the example of Section 4.3, the directed parser made
a direction error, but this then caused a nondirection error that was avoided by the undirected
parsing technique. Whether the direction error is also finally avoided or not does not depend
on the undirected parsing phase but on the reconstruction technique: Thus, in undirected
parsers, we can see the ULAS and UUAS metrics as an evaluation of the parsing phase (as
its output is an undirected graph) and the LDE and UDE metrics as an evaluation of the
reconstruction phase.

In particular, if we compare the direction error metrics for the naive and label-based
reconstructions on any of the three algorithms, we can see that the naive reconstruction
gets many arc directions wrong. As explained in Section 4.1, this is because the naive
approach lacks robustness, as a wrong choice of root can propagate and cause many arcs to
be assigned the wrong direction. In contrast, the label-based reconstruction gives very good
results, to the point that it does not produce more direction errors than the original directed
parsers.

While the differences in direction errors introduced by the transformations explain part
of the differences in the LAS and UAS scores between the naive and label-based recon-
structions reported in Section 5.1, the tables show that there is also a difference in ULAS
and UUAS between both approaches; i.e., the label-based reconstruction already produces a
better undirected graph than the naive one even before the reconstruction process. Because
the parsing algorithm is the same in both cases, this can only be due to the feature models:
In the label-based reconstruction, labels are augmented with preferred directions, and this
information is included (in the same way as standard labels) in the feature models, while
in the naive reconstruction, no directionality information is encoded in labels or used as
features.

Therefore, we can see that having no directionality information during parsing has a
negative effect on the accuracy of structural prediction. However, adding the information
about preferred direction that is available when using the label-based approach compensates
for this, making the feature models in Section 3.2 obtain good results that improve over the
directed approach.

6. ERROR ANALYSIS

The results in the previous section show that undirected parsing with label-based
reconstruction can improve the accuracy of several parsing algorithms and obtain results
that are competitive with the state of the art in transition-based parsing. These results seem
to support our hypothesis that the undirected parsing approach can successfully alleviate
error propagation, formulated in Section 3.
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To further test whether this is in fact the reason for the improvements in accuracy, we
conduct a more in-depth analysis of the outputs produced by the parsers in Section 5, going
beyond the global directed and undirected accuracy metrics to see the circumstances under
which parsing errors are being made.

In particular, as observed by McDonald and Nivre (2007), a good indicator of error
propagation in transition-based parsers is the loss of dependency precision for longer depen-

dency arcs (with the length of an arc i
l
! j being defined as jj�i j). In most transition-based

parsers, shorter arcs tend to be created earlier in transition sequences than longer ones: e.g.,
all the algorithms considered here (like the one used in McDonald and Nivre (2007)) have
the property that given nodes i < j < k < l , an arc connecting j and k will always be
created before an arc connecting i and l . This means that longer arcs, being created later,
will be more likely to be affected by the propagation of errors made in previous parsing
decisions.

Figure 8 shows the labeled dependency arc precision obtained by the directed and
undirected planar parsers for different predicted dependency lengths; i.e., for each length
l , it shows the percentage of correct arcs among the arcs of length l in the parser output.
Figure 9 shows the labeled dependency arc recall for those same parsers as a function of
gold dependency length, i.e., the percentage of gold standard arcs of each length l in the test
set that were correctly predicted by the parser.

Instead of doing a language-by-language analysis, we measure these values across
all data sets by aggregating the parser outputs for every language into a single file, and
evaluating it with respect to a corresponding joined gold standard file, thus following the
same method as McDonald and Nivre (2007). This ensures that we gain a better insight
into the distribution of parsing errors, because the data sets for each individual language are
too small to have a meaningful sample of arcs for each given distance. Note that, although
this form of data aggregation means that the obtained precision and recall values are micro
averages, the CoNLL-X test sets purposely have roughly the same size (5,000 tokens). In the
case of the Penn Treebank, we randomly chose a sample of that size as well, so that no lan-
guage is overrepresented and the result would be roughly the same if we computed a macro
average instead.
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FIGURE 8. Dependency arc precision relative to predicted dependency length for the Planar parser (Planar)
and the undirected Planar parser with label-based reconstruction (UPlanarL) on the nine data sets.
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FIGURE 9. Dependency arc recall relative to gold dependency length for the Planar parser (Planar) and the
undirected Planar parser with label-based reconstruction (UPlanarL) on the nine data sets.

Starting from length 10, we group the data into bins of size 5—Œ10; 15� and others—
for a more meaningful visualization because, even with the mentioned aggregation, data
become sparser from that point and there may be no arcs at all for some particular lengths.

As we can see in Figure 8, both the directed and the undirected planar parsers
experiment a drop in precision for longer-distance dependencies, which is expected, among
other reasons, because both are transition-based parsers and will exhibit error propagation.7

However, this phenomenon is significantly more pronounced in the directed parser, and
while the accuracies of both algorithms are practically indistinguishable for arcs of lengths
smaller than 5, the undirected Planar parser obtains a clearly better precision on longer arcs,
with the difference in precision typically being between 3 and 5 points. Note that the differ-
ence in global LAS was not so huge (see Section 5) because shorter dependencies are more
frequent in treebanks than longer ones, and thus, they have a higher weight in the overall
LAS metric.

The recall measurements, shown in Figure 9, exhibit a very similar trend. Note that,
in principle, precision is a more useful metric than recall for the purpose of estimating the
impact of error propagation, because the order in which dependency arcs are built is directly
related to their relative length and position in the output trees, with the relation to the gold
standard tree being more indirect. However, we include recall for completeness.

These results for the directed and undirected planar parsers suggest that, as we
hypothesized, the undirected variant of the parser is less affected by error propagation
than the original directed version. This is the cause of the higher precision and recall for

7 While error propagation is probably the most important reason why a transition-based parser’s performance drops for
longer dependencies, it is not the only cause for this phenomenon: McDonald and Nivre (2007) observe that even in the graph-
based parser by McDonald, Lerman, and Pereira (2006), which does not analyze sentences sequentially and thus cannot exhibit
error propagation, there is a slight drop in accuracy for longer dependencies. A reason for this is that there is less training
data for longer dependencies than for shorter ones, because most dependencies in natural language treebanks connect words
that are close to each other. Additionally, longer dependencies tend to occur more frequently in ambiguous constructions and
in complex, relatively infrequent linguistic phenomena that are difficult to parse (Nivre et al. 2010), while short dependencies
include many trivial instances like the attachment of determiners to nouns, where there is little ambiguity and many examples
in training sets allowing for a high parsing accuracy.
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longer-distance dependencies reflected in Figures 8 and 9 and of the improvement in overall
accuracy that we observed in Section 5.

Figures 10 and 11 provide precision and recall measurements analogous to those in
Figures 8 and 9, but this time for the directed and undirected 2-Planar parsers. In this case,
the results are less conclusive, with the undirected parser slightly outperforming the directed
one in precision for arcs with lengths between 5 and 10, but behaving worse for those with
lengths greater than 10. It should be noted that the overall precision of the undirected parser
for arcs of lengths at least 5 is better than that of the directed version, even though the
area under the curve is slightly larger for the latter, because arcs of lengths 5 to 10 are
more frequent in treebanks than those of lengths larger than 10. However, the results do not
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FIGURE 10. Dependency arc precision relative to predicted dependency length for the 2-Planar parser
(2Planar) and the undirected 2-Planar parser with label-based reconstruction (U2PlanarL) on the nine data sets.
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FIGURE 11. Dependency arc recall relative to gold dependency length for the 2-Planar parser (2Planar)
and the undirected 2-Planar parser with label-based reconstruction (U2PlanarL) on the nine data sets.
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seem marked enough to suggest that there is a consistent mitigation of error propagation
across languages in this case. This is coherent with the results of Section 5, where the 2-
Planar algorithm was the one that benefitted the least from undirected parsing in terms of
LAS, obtaining improvements in several data sets but only a very slight improvement on the
cross-language average.

Finally, Figures 12 and 13 provide the same comparison for the two variants of the
Covington algorithm. In this case, it is again clear that the undirected variant exhibits less
error propagation than the directed one: It obtains better precision for dependencies of
lengths between 5 and 20 (which are the vast majority of longer-distance dependencies),
and much better recall for those with lengths between 5 and 30, with differences up to 5
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FIGURE 12. Dependency arc precision relative to predicted dependency length for the Covington parser
(Covington) and the undirected Covington parser with label-based reconstruction (UCovingtonL) on the
nine data sets.
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FIGURE 13. Dependency arc recall relative to gold dependency length for the Covington parser (Covington)
and the undirected Covington parser with label-based reconstruction (UCovingtonL) on the nine data sets.
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percentage points for some of these lengths. The fact that the improvement is larger in recall
than in precision indicates that the undirected Covington parser tends to generate more long
arcs than the directed one.

Summing up the results of the error analysis, we can see that undirected parsing clearly
increases the precision for longer-distance dependency arcs, at least in the Planar and
Covington cases, providing evidence that this technique successfully alleviates error propa-
gation. In the case of the 2-Planar algorithm, the results are less conclusive, because no clear
increase (or decrease) in precision has been observed for longer dependencies. This is in line
with the LAS results in Section 5, where applying the undirected technique achieved much
larger LAS improvements on the Planar and Covington algorithms than on the 2-Planar
parser.

One possible reason why the undirected technique works better for Planar and
Covington than for 2-Planar is that the latter parser suffers from less error propagation than
the others in the first place. This can be seen by comparing the results for the directed
parsers in Figures 8, 10, and 12: In the Planar and Covington parsers, the precision soon
drops below 0.6 when we increase the dependency length, while the 2-Planar parser keeps
precisions around 0.6 for longer, suggesting that it is less affected by error propagation.

7. RELATED WORK

In this section, we review existing work in the literature related to using undirected
relations between words for parsing, as well as other proposals to address the problem of
error propagation in transition-based parsers.

7.1. Undirected Parsing

The idea of parsing with undirected relations between words has been applied before in
the work on Link Grammar (Sleator and Temperley 1991). However, in that case, undirected
arcs are the desired final result, and not an intermediate result, because the Link Grammar
formalism itself represents the syntactic structure of sentences by means of undirected links.

While most languages exhibit both left and right dependency relations, some languages
that are strongly head-initial or head-final can be annotated assuming that all the dependency
arcs have the same orientation. In such languages, dependency parsers need not worry about
arc directions, and therefore, directed and undirected parsing are equivalent. For example,
the Japanese parser by Kudo and Matsumoto (2002) simplifies its processing by assuming
that all arcs must point to the left, because Japanese is strongly head-final. This is equiva-
lent to producing an undirected dependency structure as the final output. However, such an
approach would not be useful for most other languages, as they contain both left and right
dependencies.

To the best of our knowledge, the idea of obtaining an undirected graph as an
intermediate step for parsing directed dependency structures has not been explored before
in the literature.

7.2. Error Propagation Mitigation

On the other hand, the problem of error propagation in transition-based dependency
parsers has received considerable attention in the last few years.

One way to reduce error propagation is to expand the parser’s search space by using
beam search instead of greedy deterministic search, in such a way that the parser is not
limited to exploring a single transition sequence (Zhang and Clark 2008; Zhang and Nivre
2011; Bohnet and Kuhn 2012). This approach has been shown to produce considerable
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improvements in accuracy when it is combined with global structural learning, instead of
local learning in each parser configuration (Zhang and Nivre 2012). While this technique
produces larger accuracy improvements than undirected parsing, it also has a much larger
computational cost. In theory, using a beam increases parsing time by at least a factor
proportional to the beam size. In practice, Goldberg, Zhao and Huang (2013) show that most
actual implementations additionally add an extraO.n/ factor to each transition, making lin-
ear transition systems run in quadratic time. In contrast, our undirected parsing approach
does not incur any performance penalty during parsing: The only extra processing needed
is the postprocessing step that assigns directions to arcs, but this has a negligible impact in
the total runtime because it is a simple graph algorithm that does not need to perform classi-
fication or feature extraction, which are the bottlenecks in transition-based parsing (Bohnet
2010; Volokh 2013). It is also worth noting that undirected parsing and beam search are not
mutually exclusive, because the former is a transformation on transition systems and the
latter is a search strategy that can be applied on top of any transition system. Thus, both
approaches can be applied simultaneously.

An alternative approach, introduced very recently, tackles the problem in a more effi-
cient way by employing dynamic oracles (Nivre and Goldberg 2012). In this approach, the
parser uses greedy search, but it is trained by an online procedure that considers more than
one transition sequence for each given tree (spurious ambiguity) and simulates erroneous
transitions to help the parser learn to recover from errors. However, this cannot be applied
to any parser because defining a dynamic oracle requires computing a cost function on
transitions, and it is only known how to do this efficiently for a very small set of transition-
based parsers. In particular, no dynamic oracles have been defined for nonprojective parsers,
while our undirected approach can be applied to nonprojective parsers such as 2-Planar and
Covington. Note that if dynamic oracles were defined in the future for algorithms supporting
undirected parsing, then both techniques would also be applicable simultaneously.

Finally, the easy-first parser by Goldberg and Elhadad (2010) is a transition-based parser
that builds the easier and more reliable dependency arcs first, regardless of their position
in the sentence. This limits error propagation because it leaves the decisions more likely
to cause errors for the end of the process, and allows the parser to have more contextual
information available for those hard decisions, which produces significant improvements in
accuracy. However, note that this is an entirely new algorithm running inO.nlog.n//, while
our approach is a transformation applicable to several different algorithms.

8. CONCLUSION

In this article, we have presented a technique to transform transition-based dependency
parsers satisfying certain conditions into undirected dependency parsers, which can then
be implemented and trained with feature models that do not depend on the directions of
dependency links. The resulting parsers have the drawback that they generate undirected
graphs instead of dependency trees, but we have shown how arc directions can be recovered
from the undirected output by means of one of two different postprocessing techniques, so
that the final result is a fully functional dependency parser.

The advantage of the parsers obtained in this way is that they do not need to obey
the single-head constraint until the postprocessing step. This gives the parser more free-
dom when choosing transitions to apply, and alleviates error propagation, thus producing
improvements in accuracy with respect to directed parsers. We have backed this claim with
experiments in which we evaluated the directed and undirected version of the Planar, 2-
Planar (Gómez-Rodríguez and Nivre 2010, 2013), and Covington (Covington 2001; Nivre
2008) parsing algorithms, obtaining improvements in LAS in 23 out of 27 algorithm-data set
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combinations, with statistically significant differences for several of them, outperforming
well-known state-of-the-art transition-based parsers. A more in-depth analysis has shown
that the undirected parsers tend to perform especially well for longer-distance dependencies,
which supports the hypothesis that the increase in accuracy is due to alleviation of error
propagation.

Note that in this article, we have obtained undirected parsers by transforming existing
directed parsers, and this provided a good baseline to assess the usefulness of the undi-
rected parsing technique. However, it would also be possible to define undirected parsers
from scratch, without necessarily being based on any directed parsers, and apply the same
reconstruction techniques to them so as to obtain directed dependency structures as output.
This is an interesting avenue for future work, along with the implementation of undirected
dependency parsing with beam-search decoding.
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Abstract

In this paper, we show that significant im-
provements in the accuracy of well-known
transition-based parsers can be obtained, with-
out sacrificing efficiency, by enriching the
parsers with simple transitions that act on
buffer nodes.

First, we show how adding a specific tran-
sition to create either a left or right arc of
length one between the first two buffer nodes
produces improvements in the accuracy of
Nivre’s arc-eager projective parser on a num-
ber of datasets from the CoNLL-X shared
task. Then, we show that accuracy can also be
improved by adding transitions involving the
topmost stack node and the second buffer node
(allowing a limited form of non-projectivity).

None of these transitions has a negative im-
pact on the computational complexity of the
algorithm. Although the experiments in this
paper use the arc-eager parser, the approach is
generic enough to be applicable to any stack-
based dependency parser.

1 Introduction

Dependency parsing has become a very active re-
search area in natural language processing in re-
cent years. The dependency representation of syn-
tax simplifies the syntactic parsing task, since no
non-lexical nodes need to be postulated by the
parsers; while being convenient in practice, since
dependency representations directly show the head-
modifier and head-complement relationships which
form the basis of predicate-argument structure. This

has led to the development of various data-driven
dependency parsers, such as those by Yamada and
Matsumoto (2003), Nivre et al. (2004), McDonald
et al. (2005), Martins et al. (2009), Huang and Sagae
(2010) or Tratz and Hovy (2011), which can be
trained directly from annotated data and produce ac-
curate analyses very efficiently.

Most current data-driven dependency parsers can
be classified into two families, commonly called
graph-based and transition-based parsers (Mc-
Donald and Nivre, 2011). Graph-based parsers (Eis-
ner, 1996; McDonald et al., 2005) are based on
global optimization of models that work by scoring
subtrees. On the other hand, transition-based parsers
(Yamada and Matsumoto, 2003; Nivre et al., 2004),
which are the focus of this work, use local training
to make greedy decisions that deterministically se-
lect the next parser state. Among the advantages of
transition-based parsers are the linear time complex-
ity of many of them and the possibility of using rich
feature models (Zhang and Nivre, 2011).

In particular, many transition-based parsers
(Nivre et al., 2004; Attardi, 2006; Sagae and Tsujii,
2008; Nivre, 2009; Huang and Sagae, 2010; Gómez-
Rodrı́guez and Nivre, 2010) are stack-based (Nivre,
2008), meaning that they keep a stack of partially
processed tokens and an input buffer of unread to-
kens. In this paper, we show how the accuracy of
this kind of parsers can be improved, without com-
promising efficiency, by extending their set of avail-
able transitions with buffer transitions. These are
transitions that create a dependency arc involving
some node in the buffer, which would typically be
considered unavailable for linking by these algo-
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rithms. The rationale is that buffer transitions con-
struct some “easy” dependency arcs in advance, be-
fore the involved nodes reach the stack, so that the
classifier’s job when choosing among standard tran-
sitions is simplified.

To test the approach, we use the well-known arc-
eager parser by (Nivre, 2003; Nivre et al., 2004) as
a baseline, showing improvements in accuracy on
most datasets of the CoNLL-X shared task (Buch-
holz and Marsi, 2006). However, the techniques dis-
cussed in this paper are generic and can also be ap-
plied to other stack-based dependency parsers.

The rest of this paper is structured as follows:
Section 2 is an introduction to transition-based
parsers and the arc-eager parsing algorithm. Section
3 presents the first novel contribution of this paper,
projective buffer transitions, and discusses their
empirical results on CoNLL-X datasets. Section 4
does the same for a more complex set of transitions,
non-projective buffer transitions. Finally, Section
5 discusses related work and Section 6 sums up the
conclusions and points out avenues for future work.

2 Preliminaries

We now briefly present some basic definitions for
transition-based dependency parsing; a more thor-
ough explanation can be found in (Nivre, 2008).

2.1 Dependency graphs
Let w = w1 . . . wn be an input string. A depen-
dency graph forw is a directed graphG = (Vw, A);
where Vw = {0, 1, . . . , n} is a set of nodes, and
A ⊆ Vw × L × Vw is a set of labelled arcs. Each
node in Vw encodes the position of a token in w,
where 0 is a dummy node used as artificial root. An
arc (i, l, j) will also be called a dependency link la-
belled l from i to j. We say that i is the syntactic
head of j and, conversely, that j is a dependent of
i. The length of the arc (i, l, j) is the value |j − i|.

Most dependency representations of syntax do not
allow arbitrary dependency graphs. Instead, they re-
quire dependency graphs to be forests, i.e., acyclic
graphs where each node has at most one head. In this
paper, we will work with parsers that assume depen-
dency graphs G = (Vw, A) to satisfy the following
properties:

• Single-head: every node has at most one in-

coming arc (if (i, l, j) ∈ A, then for every
k 6= i, (k, l′, j) 6∈ A).

• Acyclicity: there are no directed cycles in G.

• Node 0 is a root, i.e., there are no arcs of the
form (i, l, 0) in A.

A dependency forest with a single root (i.e., where
all the nodes but one have at least one incoming arc)
is called a tree. Every dependency forest can triv-
ially be represented as a tree by adding arcs from
the dummy root node 0 to every other root node.

For reasons of computational efficiency, many de-
pendency parsers are restricted to work with forests
satisfying an additional restriction called projectiv-
ity. A dependency forest is said to be projective
if the set of nodes reachable by traversing zero or
more arcs from any given node k corresponds to a
continuous substring of the input (i.e., is an interval
{x ∈ Vw | i ≤ x ≤ j}). For trees with a dummy
root node at position 0, this is equivalent to not al-
lowing dependency links to cross when drawn above
the nodes (planarity).

2.2 Transition systems
A transition system is a nondeterministic state ma-
chine that maps input strings to dependency graphs.
In this paper, we will focus on stack-based transi-
tion systems. A stack-based transition system is a
quadruple S = (C, T, cs, Ct) where

• C is a set of parser configurations. Each con-
figuration is of the form c = (σ, β,A) where σ
is a list of nodes of Vw called the stack, β is a
list of nodes of Vw called the buffer, and A is a
set of dependency arcs,

• T is a finite set of transitions, each of which is
a partial function t : C → C,

• cs is an initialization function, mapping a sen-
tence w1 . . . wn to an initial configuration
cs = ([0], [1, . . . , n], ∅),

• Ct is the set of terminal configurations Ct =
(σ, [], A) ∈ C.

Transition systems are nondeterministic devices,
since several transitions may be applicable to the
same configuration. To obtain a deterministic parser
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from a transition system, a classifier is trained to
greedily select the best transition at each state. This
training is typically done by using an oracle, which
is a function o : C → T that selects a single transi-
tion at each configuration, given a tree in the training
set. The classifier is then trained to approximate this
oracle when the target tree is unknown.

2.3 The arc-eager parser
Nivre’s arc-eager dependency parser (Nivre, 2003;
Nivre et al., 2004) is one of the most widely known
and used transition-based parsers (see for example
(Zhang and Clark, 2008; Zhang and Nivre, 2011)).
This parser works by reading the input sentence
from left to right and creating dependency links as
soon as possible. This means that links are created in
a strict left-to-right order, and implies that while left-
ward links are built in a bottom-up fashion, a right-
ward link a → b will be created before the node b
has collected its right dependents.

The arc-eager transition system has the following
four transitions (note that, for convenience, we write
a stack with node i on top as σ|i, and a buffer whose
first node is i as i|β):

• SHIFT : (σ, i|β,A)⇒ (σ|i, β, A).

• REDUCE : (σ|i, β, A) ⇒ (σ, β,A). Precondi-
tion: ∃k, l′ | (k, l′, i) ∈ A.

• LEFT-ARCl : (σ|i, j|β,A) ⇒ (σ, j|β,A ∪
{(j, l, i)}). Preconditions: i 6= 0 and 6 ∃k, l′ |
(k, l′, i) ∈ A (single-head)

• RIGHT-ARCl :
(σ|i, j|β,A)⇒ (σ|i|j, β,A ∪ {(i, l, j)}).

The SHIFT transition reads an input word by re-
moving the first node from the buffer and placing it
on top of the stack. The REDUCE transition pops
the stack, and it can only be executed if the topmost
stack node has already been assigned a head. The
LEFT-ARC transition creates an arc from the first
node in the buffer to the node on top of the stack,
and then pops the stack. It can only be executed if
the node on top of the stack does not already have
a head. Finally, the RIGHT-ARC transition creates
an arc from the top of the stack to the first buffer
node, and then removes the latter from the buffer
and moves it to the stack.

The arc-eager parser has linear time complex-
ity. In principle, it is restricted to projective depen-
dency forests, but it can be used in conjunction with
the pseudo-projective transformation (Nivre et al.,
2006) in order to capture a restricted subset of non-
projective forests. Using this setup, it scored as one
of the top two systems in the CoNLL-X shared task.

3 Projective buffer transitions

In this section, we show that the accuracy of stack-
based transition systems can benefit from adding one
of a pair of new transitions, which we call projective
buffer transitions, to their transition sets.

3.1 The transitions

The two projective buffer transitions are defined as
follows:

• LEFT-BUFFER-ARCl :
(σ, i|j|β,A)⇒ (σ, j|β,A ∪ {(j, l, i)}).

• RIGHT-BUFFER-ARCl :
(σ, i|j|β,A)⇒ (σ, i|β,A ∪ {(i, l, j)}).

The LEFT-BUFFER-ARC transition creates a left-
ward dependency link from the second node to
the first node in the buffer, and then removes the
first node from the buffer. Conversely, the RIGHT-
BUFFER-ARC transition creates a rightward depen-
dency link from the first node to the second node
in the buffer, and then removes the second node.
We call these transitions projective buffer transitions
because, since they act on contiguous buffer nodes,
they can only create projective arcs.

Adding one (or both) of these transitions to a
projective or non-projective stack-based transition
system does not affect its correctness, as long as
this starting system cannot generate configurations
(σ, β,A) where a buffer node has a head in A1: it
cannot affect completeness because we are not re-
moving existing transitions, and therefore any de-
pendency graph that the original system could build

1Most stack-based transition systems in the literature disal-
low such configurations. However, in parsers that allow them
(such as those defined by Gómez-Rodrı́guez and Nivre (2010)),
projective buffer transitions can still be added without affecting
correctness if we impose explicit single-head and acyclicity pre-
conditions on them. We have not included these preconditions
by default for simplicity of presentation.
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will still be obtainable by the augmented one; and it
cannot affect soundness (be it for projective depen-
dency forests or for any superset of them) because
the new transitions can only create projective arcs
and cannot violate the single-head or acyclicity con-
straints, given that a buffer node cannot have a head.

The idea behind projective buffer transitions is to
create dependency arcs of length one (i.e., arcs in-
volving contiguous nodes) in advance of the stan-
dard arc-building transitions that need at least one of
the nodes to get to the stack (LEFT-ARC and RIGHT-
ARC in the case of the arc-eager transition system).

Our hypothesis is that, as it is known that
short-distance dependencies are easier to learn for
transition-based parsers than long-distance ones
(McDonald and Nivre, 2007), handling these short
arcs in advance and removing their dependent nodes
will make it easier for the classifier to learn how
to make decisions involving the standard arc tran-
sitions.

Note that the fact that projective buffer transitions
create arcs of length 1 is not explicit in the defini-
tion of the transitions. For instance, if we add the
LEFT-BUFFER-ARCl transition only to the arc-eager
transition system, LEFT-BUFFER-ARCl will only be
able to create arcs of length 1, since it is easy to see
that the first two buffer nodes are contiguous in all
the accessible configurations. However, if we add
RIGHT-BUFFER-ARCl, this transition will have the
potential to create arcs of length greater than 1: for
example, if two consecutive RIGHT-BUFFER-ARCl

transitions are applied starting from a configuration
(σ, i|i + 1|i + 2|β,A), the second application will
create an arc i→ i+ 2 of length 2.

Although we could have added the length-1 re-
striction to the transition definitions, we have cho-
sen the more generic approach of leaving it to the
oracle instead. While the oracle typically used for
the arc-eager system follows the simple principle of
executing transitions that create an arc as soon as
it has the chance to, adding projective buffer transi-
tions opens up new possibilities: we may now have
several ways of creating an arc, and we have to de-
cide in which cases we train the parser to use one of
the buffer transitions and in which cases we prefer
to train it to ignore the buffer transitions and dele-
gate to the standard ones. Following the hypothe-
sis explained above, our policy has been to train the

parser to use buffer transitions whenever possible for
arcs of length one, and to not use them for arcs of
length larger than one. To test this idea, we also
conducted experiments with the alternative policy
“use buffer transitions whenever possible, regardless
of arc length”: as expected, the obtained accuracies
were (slightly) worse.

The chosen oracle policy is generic and can be
plugged into any stack-based parser: for a given
transition, first check whether it is possible to build a
gold-standard arc of length 1 with a projective buffer
transition.2 If so, choose that transition, and if not,
just delegate to the original parser’s oracle.

3.2 Experiments

To empirically evaluate the effect of projective
buffer transitions on parsing accuracy, we have con-
ducted experiments on eight datasets of the CoNLL-
X shared task (Buchholz and Marsi, 2006): Arabic
(Hajič et al., 2004), Chinese (Chen et al., 2003),
Czech (Hajič et al., 2006), Danish (Kromann, 2003),
German (Brants et al., 2002), Portuguese (Afonso et
al., 2002), Swedish (Nilsson et al., 2005) and Turk-
ish (Oflazer et al., 2003; Atalay et al., 2003).

As our baseline parser, we use the arc-eager pro-
jective transition system by Nivre (2003). Table 1
compares the accuracy obtained by this system alone
with that obtained when the LEFT-BUFFER-ARC

and RIGHT-BUFFER-ARC transitions are added to
it as explained in Section 3.1.

Accuracy is reported in terms of labelled (LAS)
and unlabelled (UAS) attachment score. We used
SVM classifiers from the LIBSVM package (Chang
and Lin, 2001) for all languages except for Chinese,
Czech and German. In these, we used the LIB-
LINEAR package (Fan et al., 2008) for classifica-
tion, since it reduces training time in these larger
datasets. Feature models for all parsers were specif-
ically tuned for each language.3

2In this context, “possible” means that we can create the arc
without losing the possibility of creating other gold-standard
arcs. In the case of RIGHT-BUFFER-ARC, this involves check-
ing that the candidate dependent node has no dependents in the
gold-standard tree (if it has any, we cannot remove it from the
stack or it would not be able to collect its dependents, so we do
not use the buffer transition).

3All the experimental settings and feature models used are
included in the supplementary material and also available at
http://www.grupolys.org/˜cgomezr/exp/.
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NE NE+LBA NE+RBA
Language LAS UAS LAS UAS LAS UAS
Arabic 66.43 77.19 67.78 78.26 63.87 74.63
Chinese 86.46 90.18 82.47 86.14 86.62 90.64
Czech 77.24 83.40 78.70 84.24 78.28 83.94
Danish 84.91 89.80 85.21 90.20 82.53 87.35
German 86.18 88.60 84.31 86.50 86.48 88.90
Portug. 86.60 90.20 86.92 90.58 85.55 89.28
Swedish 83.33 88.83 82.81 88.03 81.66 88.03
Turkish 63.77 74.35 57.42 66.24 64.33 74.73

Table 1: Parsing accuracy (LAS and UAS, excluding punctuation) of Nivre’s arc-eager parser without modification
(NE), with the LEFT-BUFFER-ARC transition added (NE+LBA) and with the RIGHT-BUFFER-ARC transition added
(NE+RBA). Best results for each language are shown in boldface.

As can be seen in Table 1, adding a projective
buffer transition improves the performance of the
parser in seven out of the eight tested languages. The
improvements in LAS are statistically significant at
the .01 level4 in the Arabic and Czech treebanks.

Note that the decision of which buffer transition
to add strongly depends on the dataset. In the
majority of the treebanks, we can see that when
the LEFT-BUFFER-ARC transition improves perfor-
mance the RIGHT-BUFFER-ARC transition harms it,
and vice versa. The exceptions are Czech, where
both transitions are beneficial, and Swedish, where
both are harmful. Therefore, when using projective
buffer transitions in practice, the language and anno-
tation scheme should be taken into account (or tests
should be made) to decide which one to use.

Table 2 hints at the reason for this treebank-
sensitiveness. By analyzing the relative frequency
of leftward and rightward dependency links (and,
in particular, of leftward and rightward links of
length 1) in the different treebanks, we see a rea-
sonably clear tendency: the LEFT-BUFFER-ARC

transition works better in treebanks that contain a
large proportion of rightward arcs of length 1, and
the RIGHT-BUFFER-ARC transition works better in
treebanks with a large proportion of leftward arcs of
length 1. Note that, while this might seem coun-
terintuitive at a first glance, it is coherent with the
hypothesis that we formulated in Section 3.1: the

4Statistical significance was assessed using Dan Bikel’s ran-
domized parsing evaluation comparator: http://www.cis.
upenn.edu/˜dbikel/software.html#comparator

Language L% R% L1% R1% Best PBT
Arabic 12.3 87.7 6.5 55.1 LBA
Chinese 58.4 41.6 35.8 15.1 RBA
Czech 41.4 58.6 22.1 24.9 LBA*
Danish 17.1 82.9 10.9 43.0 LBA
German 39.8 60.2 20.3 19.9 RBA
Portug. 32.6 67.4 22.5 26.9 LBA
Swedish 38.2 61.8 24.1 21.8 LBA*
Turkish 77.8 22.2 47.2 10.4 RBA

Table 2: Analysis of the datasets used in the experiments
in terms of: percentage of leftward and rightward links
(L%, R%), percentage of leftward and rightward links
of length 1 (L1%, R1%), and which projective buffer
transition works better for each dataset according to the
results in Table 1 (LBA = LEFT-BUFFER-ARC, RBA
= RIGHT-BUFFER-ARC). Languages where both tran-
sitions are beneficial (Czech) or harmful (Swedish) are
marked with an asterisk.

advantage of projective buffer transitions is not that
they build arcs more accurately than standard arc-
building transitions (in fact the opposite might be
expected, since they work on nodes while they are
still on the buffer and we have less information about
their surrounding nodes in our feature models), but
that they make it easier for the classifier to decide
among standard transitions. The analysis on Table
2 agrees with that explanation: LEFT-BUFFER-ARC

improves performance in treebanks where it is not
used too often but it can filter out leftward arcs of
length 1, making it easier for the parser to be accu-
rate on rightward arcs of length 1; and the converse
happens for RIGHT-BUFFER-ARC.
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NE NE+LBA NE+RBA NE+LBA+RBA
Language LA RA LA* RA LBA LA RA* RBA LA* RA* LBA RBA
Arabic 58.28 67.77 42.61 68.65 77.46 55.88 60.63 79.70 37.40 62.28 66.78 75.94
Chinese 85.69 85.79 80.92 84.19 89.00 85.96 84.77 88.01 81.08 79.46 87.72 86.33
Czech 85.73 76.44 80.79 78.34 91.07 86.25 76.62 82.58 79.49 75.98 90.26 81.97
Danish 89.47 83.92 88.65 84.16 91.72 86.27 78.04 92.30 90.23 77.52 88.79 92.10
German 89.15 87.11 83.75 87.23 94.30 89.55 84.38 95.98 79.26 81.60 91.66 90.73
Portuguese 94.77 84.91 90.83 85.11 97.07 93.84 81.86 92.29 88.72 79.86 96.02 89.26
Swedish 87.75 80.74 84.62 81.30 92.83 87.12 74.77 90.73 78.10 72.50 90.86 89.89
Turkish 59.68 74.21 53.02 74.01 72.78 60.23 69.23 73.91 49.34 48.48 65.57 41.94

Table 3: Labelled precision of the arcs built by each transition of Nivre’s arc-eager parser without modification (NE),
with a projective buffer transition added (NE+LBA, NE+RBA) and with both projective buffer transitions added
(NE+LBA+RBA). We mark a standard LEFT-ARC (LA) or RIGHT-ARC (LA) transition with an asterisk (LA*, RA*)
when it is acting only on a “hard” subset of leftward (rightward) arcs, and thus its precision is not directly comparable
to that of (LA, RA). Best results for each language and transition are shown in boldface.

To further test this idea, we computed the la-
belled precision of each individual transition of the
parsers with and without projective buffer transi-
tions, as shown in Table 3. As we can see, projec-
tive buffer transitions achieve better precision than
standard transitions, but this is not surprising since
they act only on “easy” arcs of length 1. There-
fore, this high precision does not mean that they ac-
tually build arcs more accurately than the standard
transitions, since it is not measured on the same set
of arcs. Similarly, adding a projective buffer tran-
sition decreases the precision of its corresponding
standard transition, but this is because the standard
transition is then dealing only with “harder” arcs of
length greather than 1, not because it is making more
errors. A more interesting insight comes from com-
paring transitions that are acting on the same tar-
get set of arcs: we see that, in the languages where
LEFT-BUFFER-ARC is beneficial, the addition of
this transition always improves the precision of the
standard RIGHT-ARC transition; and the converse
happens with RIGHT-BUFFER-ARC with respect to
LEFT-ARC. This further backs the hypothesis that
the filtering of “easy” links achieved by projective
buffer transitions makes it easier for the classifier to
decide among standard transitions.

We also conducted experiments adding both tran-
sitions at the same time (NE+LBA+RBA), but the
results were worse than adding the suitable transi-
tion for each dataset. Table 3 hints at the reason: the
precision of buffer transitions noticeably decreases
when both of them are added at the same time, pre-
sumably because it is difficult for the classifier to

NE+LBA/RBA NE+PP (CoNLL X)

Language LAS UAS LAS UAS
Arabic 67.78 78.26 66.71 77.52
Chinese 86.62 90.64 86.92 90.54
Czech 78.70 84.24 78.42 84.80
Danish 85.21 90.20 84.77 89.80
German 86.48 88.90 85.82 88.76
Portug. 86.92 90.58 87.60 91.22
Swedish 82.81 88.03 84.58 89.50
Turkish 64.33 74.73 65.68 75.82

Table 4: Comparison of the parsing accuracy (LAS
and UAS, excluding punctuation) of Nivre’s arc-eager
parser with projective buffer transitions (NE+LBA/RBA)
and the parser with the pseudo-projective transformation
(Nivre et al., 2006)

decide between both with the restricted feature in-
formation available for buffer nodes.

To further put the obtained results into context,
Table 4 compares the performance of the arc-eager
parser with the projective buffer transition most suit-
able for each dataset with the results obtained by the
parser with the pseudo-projective transformation by
Nivre et al. (2006) in the CoNLL-X shared task, one
of the top two performing systems in that event. The
reader should be aware that the purpose of this ta-
ble is only to provide a broad idea of how our ap-
proach performs with respect to a well-known refer-
ence point, and not to make a detailed comparison,
since the two parsers have not been tuned in homo-
geneous conditions: on the one hand, we had access
to the CoNLL-X test sets which were unavailable
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System Arabic Danish
Nivre et al. (2006) 66.71 84.77
McDonald et al. (2006) 66.91 84.79
Nivre (2009) 67.3 84.7
Gómez-Rodrı́guez and Nivre (2010) N/A 83.81
NE+LBA/RBA 67.78 85.21

Table 5: Comparison of the Arabic and Danish LAS ob-
tained by the arc-eager parser with projective buffer tran-
sitions in comparison to other parsers in the literature that
report results on these datasets.

for the participants in the shared task; on the other
hand, we did not fine-tune the classifier parameters
for each dataset like Nivre et al. (2006), but used de-
fault values for all languages.

As can be seen in the table, even though the
pseudo-projective parser is able to capture non-
projective syntactic phenomena, the algorithm with
projective buffer transitions (which is strictly pro-
jective) outperforms it in four of the eight treebanks,
including non-projective treebanks such as the Ger-
man one.

Furthermore, to our knowledge, our LAS results
for Arabic and Danish are currently the best pub-
lished results for a single-parser system on these
datasets, not only outperforming the systems partic-
ipating in CoNLL-X but also other parsers tested on
these treebanks in more recent years (see Table 5).

Finally, it is worth noting that adding projective
buffer transitions has no negative impact on effi-
ciency, either in terms of computational complex-
ity or of empirical runtime. Since each projective
buffer transition removes a node from the buffer, no
more than n such transitions can be executed for
a sentence of length n, so adding these transitions
cannot increase the complexity of a transition-based
parser. In the particular case of the arc-eager parser,
using projective buffer transitions reduces the aver-
age number of transitions needed to obtain a given
dependency forest, as some nodes can be dispatched
by a single transition rather than being shifted and
later popped from the stack. In practice, we ob-
served that the training and parsing times of the arc-
eager parser with projective buffer transitions were
slightly faster than without them on the Arabic, Chi-
nese, Swedish and Turkish treebanks, and slightly
slower than without them on the other four tree-
banks, so adding these transitions does not seem to

noticeably degrade (or improve) practical efficiency.

4 Non-projective buffer transitions

We now present a second set of transitions that still
follow the idea of early processing of some depen-
dency arcs, as in Section 3; but which are able to
create arcs skipping over a buffer node, so that they
can create some non-projective arcs. For this reason,
we call them non-projective buffer transitions.

4.1 The transitions

The two non-projective buffer transitions are defined
as follows:

• LEFT-NONPROJ-BUFFER-ARCl :
(σ|i, j|k|β,A) ⇒ (σ, j|k|β,A ∪ {(k, l, i)}).
Preconditions: i 6= 0 and 6 ∃m, l′ | (m, l′, i) ∈
A (single-head)

• RIGHT-NONPROJ-BUFFER-ARCl :
(σ|i, j|k|β,A)⇒ (σ|i, j|β,A ∪ {(i, l, k)}).

The LEFT-NONPROJ-BUFFER-ARC transition
creates a leftward arc from the second buffer node
to the node on top of the stack, and then pops the
stack. It can only be executed if the node on top of
the stack does not already have a head. The RIGHT-
NONPROJ-BUFFER-ARC transition creates an arc
from the top of the stack to the second node in the
buffer, and then removes the latter from the buffer.
Note that these transitions are analogous to projec-
tive buffer transitions, and they use the second node
in the buffer in the same way, but they create arcs
involving the node on top of the stack rather than
the first buffer node. This change makes the pre-
condition that checks for a head necessary for the
transition LEFT-NONPROJ-BUFFER-ARC to respect
the single-head constraint, since many stack-based
parsers can generate configurations where the node
on top of the stack has a head.

We call these transitions non-projective buffer
transitions because, as they act on non-contiguous
nodes in the stack and buffer, they allow the creation
of a limited set of non-projective dependency arcs.
This means that, when added to a projective parser,
they will increase its coverage.5 On the other hand,

5They may also increase the coverage of parsers allowing
restricted forms of non-projectivity, but that depends on the par-
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NE NE+LNBA NE+RNBA
Language LAS UAS LAS UAS LAS UAS
Arabic 66.43 77.19 67.13 77.90 67.21 77.92
Chinese 86.46 90.18 87.71 91.39 86.98 90.76
Czech 77.24 83.40 78.88 84.72 78.12 83.78
Danish 84.91 89.80 85.17 90.10 84.25 88.92
German 86.18 88.60 86.96 88.98 85.56 88.30
Portug. 86.60 90.20 86.78 90.34 86.07 89.92
Swedish 83.33 88.83 83.55 89.30 83.17 88.59
Turkish 63.77 74.35 63.04 73.99 65.01 75.70

Table 6: Parsing accuracy (LAS and UAS, excluding punctuation) of Nivre’s arc-eager parser without modifica-
tion (NE), with the LEFT-NONPROJ-BUFFER-ARC transition added (NE+LNBA) and with the RIGHT-NONPROJ-
BUFFER-ARC transition added (NE+RNBA). Best results for each language are shown in boldface.

adding these transitions to a stack-based transition
system does not affect soundness under the same
conditions and for the same reasons explained for
projective buffer transitions in Section 3.1.

Note that the fact that non-projective buffer tran-
sitions are able to create non-projective dependency
arcs does not mean that all the arcs that they build
are non-projective, since an arc on non-contiguous
nodes in the stack and buffer may or may not cross
other arcs. This means that non-projective buffer
transitions serve a dual purpose: not only they
increase coverage, but they also can create some
“easy” dependency links in advance of standard
transitions, just like projective buffer transitions.

Contrary to projective buffer transitions, we do
not impose any arc length restrictions on non-
projective buffer transitions (either as a hard con-
straint in the transitions themselves or as a policy in
the training oracle), since we would like the increase
in coverage to be as large as possible. We wish to
allow the parsers to create non-projective arcs in a
straightforward way and without compromising effi-
ciency. Therefore, to train the parser with these tran-
sitions, we use an oracle that employs them when-
ever possible, and delegates to the original parser’s
oracle otherwise.

4.2 Experiments

We evaluate the impact of non-projective buffer tran-
sitions on parsing accuracy by using the same base-

ticular subset of non-projective structures captured by each such
parser.

line parser, datasets and experimental settings as for
projective buffer transitions in Section 3.2. As can
be seen in Table 6, adding a non-projective buffer
transition to the arc-eager parser improves its per-
formance on all eight datasets. The improvements in
LAS are statistically significant at the .01 level (Dan
Bikel’s comparator) for Chinese, Czech and Turk-
ish. Note that the Chinese treebank is fully projec-
tive, this means that non-projective buffer transitions
are also beneficial when creating projective arcs.

While with projective buffer transitions we ob-
served that each of them was beneficial for about
half of the treebanks, and we related this to the
amount of leftward and rightward links of length 1 in
each; in the case of non-projective buffer transitions
we do not observe this tendency. In this case, LEFT-
NONPROJ-BUFFER-ARC works better than RIGHT-
NONPROJ-BUFFER-ARC in all datasets except for
Turkish and Arabic.

As with the projective transitions, we gathered
data about the individual precision of each of the
transitions. The results were similar to those for
the projective transitions, and show that adding a
non-projective buffer transition improves the preci-
sion of the standard transitions. We also experimen-
tally checked that adding both non-projective buffer
transitions at the same time (NE+LNBA+RNBA)
achieved worse performance than adding only the
most suitable transition for each dataset.

Table 7 compares the performance of the arc-
eager parser with the best non-projective buffer tran-
sition for each dataset with the results obtained by
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NE+LNBA/RNBA NE+PP (CoNLL X)

Language LAS UAS LAS UAS
Arabic 67.21 77.92 66.71 77.52
Chinese 87.71 91.39 86.92 90.54
Czech 78.88 84.72 78.42 84.80
Danish 85.09 89.98 84.77 89.80
German 86.96 88.98 85.82 88.76
Portug. 86.78 90.34 87.60 91.22
Swedish 83.55 89.30 84.58 89.50
Turkish 65.01 75.70 65.68 75.82

Table 7: Comparison of the parsing accuracy (LAS
and UAS, excluding punctuation) of Nivre’s arc-
eager parser with non-projective buffer transitions
(NE+LNBA/RNBA) and the parser with the pseudo-
projective transformation (Nivre et al., 2006).

System PP PR NP NR
NE 80.40 80.76 - -
NE+LNBA/RNBA 80.96 81.33 58.87 15.66
NE+PP (CoNLL-X) 80.71 81.00 50.72 29.57

Table 8: Comparison of the precision and recall for pro-
jective (PP, PR) and non-projective (NP, NR) arcs, av-
eraged over all datasets, obtained by Nivre’s arc-eager
parser with and without non-projective buffer transitions
(NE+LNBA/RNBA, NE) and the parser with the pseudo-
projective transformation (Nivre et al., 2006).

the parser with the pseudo-projective transformation
by Nivre et al. (2006) in the CoNLL-X shared task.
Note that, like the one in Table 4, this should not
be interpreted as a homogeneous comparison. We
can see that the algorithm with non-projective buffer
transitions obtains better LAS in five out of the eight
treebanks. Precision and recall data on projective
and non-projective arcs (Table 8) show that, while
our parser does not capture as many non-projective
arcs as the pseudo-projective transformation (unsur-
prisingly, as it can only build non-projective arcs in
one direction: that of the particular non-projective
buffer transition used for each dataset); it does so
with greater precision and is more accurate than that
algorithm in projective arcs.

Like projective buffer transitions, non-projective
transitions do not increase the computational com-
plexity of stack-based parsers. The observed train-
ing and parsing times for the arc-eager parser with
non-projective buffer transitions showed a small

overhead with respect to the original arc-eager
(7.1% average increase in training time, 17.0% in
parsing time). For comparison, running the arc-
eager parser with the pseudo-projective transforma-
tion (Nivre et al., 2006) on the same machine pro-
duced a 23.5% increase in training time and a 87.5%
increase in parsing time.

5 Related work

The approach of adding an extra transition to a
parser to improve its accuracy has been applied in
the past by Choi and Palmer (2011). In that pa-
per, the LEFT-ARC transition from Nivre’s arc-eager
transition system is added to a list-based parser.
However, the goal of that transition is different
from ours (selecting between projective and non-
projective parsing, rather than building some arcs in
advance) and the approach is specific to one algo-
rithm while ours is generic – for example, the LEFT-
ARC transition cannot be added to the arc-standard
and arc-eager parsers, or to extensions of those like
the ones by Attardi (2006) or Nivre (2009), because
these already have it.

The idea of creating dependency arcs of length 1
in advance to help the classifier has been used by
Cheng et al. (2006). However, their system creates
such arcs in a separate preprocessing step rather than
dynamically by adding a transition to the parser, and
our approach obtains better LAS and UAS results on
all the tested datasets.

The projective buffer transitions presented here
bear some resemblance to the easy-first parser by
Goldberg and Elhadad (2010), which allows cre-
ation of dependency arcs between any pair of con-
tiguous nodes and is based on the idea of “easy” de-
pendency links being created first. However, while
the easy-first parser is an entirely new O(n log(n))
algorithm, our approach is a generic extension for
stack-based parsers that does not increase their com-
plexity (so, for example, applying it to the arc-eager
system as in the experiments in this paper yields
O(n) complexity).

Non-projective transitions that create dependency
arcs between non-contiguous nodes have been used
in the transition-based parser by Attardi (2006).
However, the transitions in that parser do not use
the second buffer node, since they are not intended
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to create some arcs in advance. The non-projective
buffer transitions presented in this paper can also be
added to Attardi’s parser.

6 Discussion

We have presented a set of two transitions, called
projective buffer transitions, and showed that adding
one of them to Nivre’s arc-eager parser improves its
accuracy in seven out of eight tested datasets from
the CoNLL-X shared task. Furthermore, adding one
of a set of non-projective buffer transitions achieves
accuracy improvements in all of the eight datasets.
The obtained improvements are statistically signif-
icant for several of the treebanks, and the parser
with projective buffer transitions surpassed the best
published single-parser LAS results on two of them.
This comes at no cost either on computational com-
plexity or (in the case of projective transitions) on
empirical training and parsing times with respect to
the original parser.

While we have chosen Nivre’s well-known arc-
eager parser as our baseline, we have shown that
these transitions can be added to any stack-based de-
pendency parser, and we are not aware of any spe-
cific property of arc-eager that would make them
work better in practice on this parser than on others.
Therefore, future work will include an evaluation of
the impact of buffer transitions on more transition-
based parsers. Other research directions involve in-
vestigating the set of non-projective arcs allowed
by non-projective buffer transitions, defining dif-
ferent variants of buffer transitions (such as non-
projective buffer transitions that work with nodes lo-
cated deeper in the buffer) or using projective and
non-projective buffer transitions at the same time.
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Portuguese. In Proceedings of the 3rd International
Conference on Language Resources and Evaluation
(LREC 2002), pages 1968–1703, Paris, France. ELRA.

Nart B. Atalay, Kemal Oflazer, and Bilge Say. 2003. The
annotation process in the Turkish treebank. In Pro-
ceedings of EACL Workshop on Linguistically Inter-
preted Corpora (LINC-03), pages 243–246, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

Giuseppe Attardi. 2006. Experiments with a multilan-
guage non-projective dependency parser. In Proceed-
ings of the 10th Conference on Computational Natural
Language Learning (CoNLL), pages 166–170.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The tiger treebank.
In Proceedings of the Workshop on Treebanks and Lin-
guistic Theories, September 20-21, Sozopol, Bulgaria.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 149–164.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM: A
Library for Support Vector Machines. Software avail-
able at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang,
and Z. Gao. 2003. Sinica treebank: Design criteria,
representational issues and implementation. In Anne
Abeillé, editor, Treebanks: Building and Using Parsed
Corpora, chapter 13, pages 231–248. Kluwer.

Yuchang Cheng, Masayuki Asahara, and Yuji Mat-
sumoto. 2006. Multi-lingual dependency parsing at
NAIST. In Proceedings of the Tenth Conference on
Computational Natural Language Learning, CoNLL-
X ’06, pages 191–195, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Jinho D. Choi and Martha Palmer. 2011. Getting the
most out of transition-based dependency parsing. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: short papers - Volume 2, HLT
’11, pages 687–692, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proceed-
ings of the 16th International Conference on Compu-
tational Linguistics (COLING), pages 340–345.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. 2008. LIBLINEAR: A library for large lin-
ear classification. Journal of Machine Learning Re-
search, 9:1871–1874.

317

Chapter 4. Published Articles

76



Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL HLT), pages 742–750.
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den. Växjö University Press.

Andre Martins, Noah Smith, and Eric Xing. 2009. Con-
cise integer linear programming formulations for de-
pendency parsing. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP (ACL-IJCNLP), pages 342–
350.

Ryan McDonald and Joakim Nivre. 2007. Charac-
terizing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 122–131.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Comput. Lin-
guist., 37:197–230.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
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Abstract. A known way to improve the accuracy of dependency parsers is to
combine several different parsing algorithms, in such a way that the weaknesses of
each of the models can be compensated by the strengths of others. For example,
voting-based combination schemes are based on variants of the idea of analyzing
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each sentence with various parsers, and constructing a combined output where the
head of each node is determined by “majority vote” among the different parsers.
Typically, such approaches combine very different parsing models to take advantage
of the variability in the parsing errors they make.

In this paper, we show that consistent improvements in accuracy can be obtained
in a much simpler way by combining a single parser with itself. In particular,
we start with a greedy implementation of the Nivre pseudo-projective arc-eager
algorithm, a well-known left-to-right transition-based parser, and we combine it
with a “mirrored” version of the algorithm that analyzes sentences from right to
left. To determine which of the two obtained outputs we trust for the head of each
node, we use simple criteria based on the length and position of dependency arcs.

Experiments on several datasets from the CoNLL-X shared task and the WSJ
section of the English Penn Treebank show that the novel combination system ob-
tains better performance than the baseline arc-eager parser in all cases. To test
the generality of the approach, we also perform experiments with a different transi-
tion system (arc-standard) and a different search strategy (beam search), obtaining
similar improvements in all these settings.

Keywords: automata, computational linguistics, dependency parsing, natural lan-
guage processing, parsing.

Mathematics Subject Classification 2010: 68T50

1 INTRODUCTION

Nowadays the huge amount of raw textual information that computers must process
gives a vital role to tasks such as information extraction, machine translation or
question answering in many different fields. All these tasks involve a transformation
of unrestricted natural language text into representations that a machine can handle
easily. This is, in fact, the main goal of natural language processing (NLP).

One of the most ubiquitous and useful NLP processes is syntactic parsing. This
consists of mapping a sentence in natural language into its syntactic representa-
tion. Two different syntactic formalisms are popular for this purpose: constituency
representations [5, 12] or dependency representations [43]. Parsing a sentence with
constituency representations means decomposing it into constituents or phrases, and
in that way a phrase structure tree is created with relationships between words and
phrases, as in Figure 1. In contrast, the goal of parsing a sentence with dependency
representations is to create a dependency graph consisting of lexical nodes linked by
binary relations called dependencies. A dependency relation connects two words,
with one of them acting as the head and the other one as the dependent. A depen-
dency graph can also be called a dependency tree, if each node of the graph has
only one head and the structure is acyclic. Figure 2 shows a dependency tree for an
English sentence, where each edge is labeled with a dependency type.
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Fig. 1. Constituency tree for an English sentence.
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Fig. 2. Dependency tree for an English sentence.

Dependency parsing has recently gained a wide interest in the natural language
processing community and has been used for many problems ranging from machine
translation [13] to ontology construction [41]. Some of the most accurate and efficient
dependency parsers are based on data-driven parsing models such as those by Nivre
et al [34], McDonald et al [28], Titov and Henderson [44], Martins et al [25], Huang
and Sagae [21], Koo and Collins [22], Zhang and Nivre [49], Bohnet and Nivre
[7] or Gómez-Rodŕıguez and Nivre [17]. These dependency parsers can be trained
from syntactically annotated text without the need for a formal grammar, and they
provide a simple representation of syntax that maps to predicate-argument structure
in a straightforward way.

Most data-driven dependency parsers can be classified into two families: graph-
based and transition-based parsers [27]. On the one hand, graph-based parsers [14,
28] learn a model for scoring possible dependency graphs for a given sentence and,
then, the parsing process consists of searching for the highest-scoring graph. In
transition-based parsing [45, 34], a model is learned for scoring transitions from
one parser state to the next, and the parsing process consists of finding a high-
scoring sequence of transitions that will traverse a series of states until a complete
dependency graph is created. The most commonly used graph-based and transition-
based parsers are the maximum spanning tree parser by McDonald et al [28] and
the arc-eager parser with the pseudo-projective algorithm by Nivre and Nilsson [37],
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respectively.

It has been proved by McDonald and Nivre [26] that transition-based parsers
suffer from error propagation: a transition erroneously chosen at an early moment
can place the parser in an incorrect state that will in turn lead to more incor-
rect transitions in the future. Since some transition-based parsers (as the arc-eager
parser) analyze the sentence from left to right, the probability of choosing an incor-
rect transition tends to be higher as we approach the end of a given sentence. As
a consequence, the dependency tree obtained by a transition-based parser typically
presents more (propagating) errors in the rightmost arcs of the graph than in the
leftmost arcs.

With the goal of reducing the effect of error propagation on the rightmost arcs
of the graph, Nilsson [29] proposes the application of a reverse parsing strategy on
the arc-eager parser by Nivre [31]. This proceeds by transforming the left-to-right
arc-eager parser into a right-to-left variant. That way, the reverse parser analyses a
sentence from the end to the beginning, likely making more errors in the leftmost
arcs of the dependency tree than in the rightmost arcs in relation to the standard
parser.

Nilsson [29] proved experimentally that analyzing a sentence in reverse order
does not improve the global accuracy of the arc-eager parser. However, the reverse
arc-eager parser is able to build correctly some arcs of the dependency tree that
the original arc-eager version creates erroneously. Concretely, we found out that,
in addition to having a better performance in rightmost arcs, the right-to-left arc-
eager version is able to achieve higher accuracy in arcs with certain lengths. To
take advantage of that, we present an efficient combination system that obtains a
new dependency tree by joining the dependency trees created by each parser. This
system uses two different strategies to accomplish the combination: a strategy based
on the position of the arcs and another based on the length of the arcs.

Our combination system presents several advantages in comparison to other
strategies such as voting or stacking,1 where a complex combination process must be
done involving several parsers with different natures. The simplicity of our approach
allows the pseudo-projective arc-eager parser by Nivre and Nilsson [37] to improve
its own accuracy without increasing its execution time and by using exclusively one
parser that analyses a sentence in parallel in both directions at the same time.

We test the accuracy of the combinative approach on eight datasets from CoNLL-
X shared task [9] and on the English WSJ corpus from the Penn Treebank [24]. In
these experiments, the combination of the arc-eager parser and its reverse variant
outperforms the accuracy of both parsers in the nine languages tested, and even
improves over the scores of the maximum spanning tree parser by McDonald et

1 Strictly speaking, our approach can be seen as a degenerate instance of weighted
voting, where there are only two systems and therefore the weighting scheme reduces to
a boolean criterion to choose among them at each node. In this article, we call “voting
systems” those that use more than two systems, thus requiring more complex schemes
involving majority voting or numeric weights.
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al [28]. Moreover, the combinative approach is not only beneficial for the pseudo-
projective arc-eager parser with greedy search, but also for other transition-based
models like the pseudo-projective arc-standard parser [32] and other search strategies
like the beam search used by the ZPar system [48], as we show experimentally in
Section 6.

The rest of this article is organized as follows: in Section 2, we discuss other
research work that deals with parser combination. Section 3 introduces some nota-
tion and concepts about transition-based dependency parsing. Section 4 describes
the pseudo-projective arc-eager parser [37] and its reverse variant. In Section 5, we
discuss different strategies to implement the parser combination system. Section
6 presents an empirical study of the performance of the reverse arc-eager parser
and the combinative approaches, as well as the effect of this novel technique on the
arc-standard parser and a beam-search-based parser. It also shows an analysis that
explains why the combination system improves over the individual scores. Finally,
Section 7 contains a final discussion.

2 RELATED WORK

Some dependency parser combination approaches have been applied successfully in
the literature. One of the most influential is the approach by Sagae and Lavie [39].
Following on the work by Zeman and Žabokrtský [46], they present a framework
for combining the output of different parsers by applying a voting system. This
approach consists of letting several parsers assign votes to the dependency links
that they consider that should belong to the final dependency graph. In that way,
a weighted graph is created. Afterwards, a quadratic maximum spanning tree al-
gorithm must be applied to find the final output. This combination system has
the drawback of increasing the time complexity of the parsing process significantly.
As the maximum spanning tree algorithm must be used, a combination of different
linear parsers results into a quadratic system. On the contrary, our approach does
not increase the time complexity of the combined parsers.

The combination method described by Sagae and Lavie [39] was used in other
works to combine several transition-based parsers. Concretely, Hall et al [20] and
Nilsson [29] use this voting system to combine six transition-based parsers, where two
of them are the arc-eager parser by Nivre [31] and its reverse version. Only Nilsson
[29] presents an individual evaluation of the reverse arc-eager parsing accuracy. In
his results, he shows that the reverse arc-eager version performs worse than the
standard version on ten datasets of the CoNLL 2007 shared task. However, the
author confirms that the combined parsers were not properly optimized. This does
not happen in our research, where both models were conveniently tuned and, as a
consequence, the reverse arc-eager parser proves more accurate than the conventional
left-to-right version on the Czech dataset.

Another example of using the voting combination by Sagae and Lavie [39] is the
work by Samuelsson et al [40]. In this research, two more transition-based parsers
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are added to those combined in Hall et al [20] and Nilsson [29]. In addition to
this, the authors join the eight combined parsers with a semantic parser in order to
achieve a better accuracy. As the other approaches based in voting combination, this
one tries to combine different parsers with different time complexities. The resulting
system’s complexity is the maximum among those of the combined systems, which
is quadratic. In our combination system only one single algorithm is used (the
arc-eager parser by Nivre and Nilsson [37]) and its time complexity remains linear.

A different combinative approach is the one undertaken by Nivre and McDonald
[36]. They implement a feature-based integration which tries to combine a graph-
based parser with a transition-based model only during learning time: one parser
helps the other to create the trained model. This method receives the name of stack-
ing combination. The main drawback is that the quadratic time complexity of the
graph-based parser increases the overall time complexity. To prevent that, Attardi
and Dell’Orletta [3] propose a stacking combination of one linear transition-based
parser with its own reverse version. In that way, the linear time complexity is main-
tained. However, this approach has the drawback that the right-to-left parser cannot
be applied until the left-to-right parser ends, whilst our combination system allows
both parsers to run in parallel, reducing the execution time. This means that, in
multicore machines, our approach takes practically the same time to parse a sentence
as the single arc-eager parser does, and additionally, it achieves an improvement in
accuracy.

An evaluation and comparison between the voting and stacking combination
approaches, as well as further information about these approaches, can be found in
Fishel and Nivre [16] and Surdeanu and Manning [42].

Finally, Zhang and Clark [47] propose a beam-search parser that combines both
graph-based and transition-based parsing into a single system that uses a transition-
based decoder with a scoring model using graph-based information. This approach,
which has also been used in other recent works [6, 7], is different from stacking:
instead of using two separately trained models, it combines the graph-based and
transition-based approaches into a single model. In spite of the fact that the resulting
system is also linear, the approach developed by Zhang and Clark is not as fast as
the greedy arc-eager algorithm that we use in this paper.

3 TRANSITION-BASED DEPENDENCY PARSING

In this section, we introduce some definitions and notation concerning transition-
based dependency parsing that will be used throughout the article.

3.1 Dependency parsing

A dependency graph is a labeled directed graph that represents the syntactic struc-
ture of a given sentence. More formally, it can be defined as follows:

Definition 1. Let w = w1 . . . wn be an input string. A dependency graph for
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w1 . . . wn is a labelled directed graph G = (Vw, E), where Vw = {0, . . . , n} is the
set of nodes, and E ⊆ Vw × L× Vw is the set of labelled directed arcs.

The set Vw is the set of nodes. This means that every token index i of the
sentence is a node (1 ≤ i ≤ n) and that there is a special node 0, which does not
correspond to any token of the sentence and which will always be a root of the
dependency graph (normally the only root).

Each arc in E encodes a dependency relation between two tokens. We call an
edge (wi, l, wj) in a dependency graph G a dependency link from wi to wj with label

l, represented as wi
l→ wj. We say that wi is the head of wj and, conversely, that wj

is a dependent of wi. The labels on dependency links are typically used to represent
their associated syntactic functions, such as SBJ for subject in the dependency link
is2 → This1 in Figure 2.

For convenience, we write wi → wj ∈ E if the link (wi,wj) exists (regardless of
its label) and wi →∗ wj ∈ E if there is a (possibly empty) directed path from wi to
wj.

Most dependency-based syntactic formalisms do not allow arbitrary dependency
graphs as syntactic representations. Instead, they are typically restricted to acyclic
graphs where each node has at most one head. Such dependency graphs are called
dependency forests.

Definition 2. A dependency graph G is said to be a dependency forest if it satisfies
the following:

1. Single-head constraint : if wi → wj, then there is no wk 6= wi such that wk → wj.

2. Acyclicity constraint : if wi →? wj, then there is no arc wj → wi.

Nodes that have no head in a dependency forest are called roots. Apart from the
previous two constraints, some dependency formalisms add the additional constraint
that a dependency forest can have only one root (or, equivalently, that it must be
connected). A forest of this form is called a dependency tree.

The system in charge of parsing a given sentence producing a dependency graph
is called a dependency parser. In this article, we will work with dependency parsers
that output dependency trees. These parsers enforce the single-head and acyclicity
constraints, and they link all of their root nodes as dependents of a dummy root
node 0.

For reasons of computational efficiency, many dependency parsers are restricted
to work with projective dependency structures, that is, dependency trees in which
the projection of each node corresponds to a contiguous substring of the input:

Definition 3. An arc wi → wk is projective iff, for every word wj occurring between
wi and wk in the sentence (wi<wj<wk or wi>wj>wk), wi →? wj.

Definition 4. A dependency graph G = (Vw, E) is projective iff every arc in E is
projective.
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Projective dependency trees are not sufficient to represent all the linguistic phe-
nomena observed in natural languages, but they have the advantage of being effi-
ciently parsable. Even so, non-projective dependency structures present in natural
languages represent, in many languages, a rather reduced portion of the total.

3.2 Transition systems

In this article, we work with transition-based dependency parsers that are defined
following the framework of Nivre [33]. According to this, a deterministic depen-
dency parser is defined by a non-deterministic transition system, specifying a set
of elementary operations that can be executed during the parsing process, and an
oracle that deterministically selects a single transition at each choice point of the
parsing process. More formally, they are defined as follows:

Definition 5. A transition system for dependency parsing is a tuple S = (C, T, cs,
Ct), where

1. C is a set of possible parser configurations,

2. T is a finite set of transitions, which are partial functions t : C → C,

3. cs is a total initialization function that maps each input string w to a unique
initial configuration cs(w), and

4. Ct ⊆ C is a set of terminal configurations.

Definition 6. An oracle for a transition system is a function o : C → T .

Although the specific nature of configurations varies among parsers, they are
required to contain at least a set A of dependency arcs and a buffer B of unread
words, which initially holds all the words in the input sentence. A transition-based
parser will be able to read input words by popping them from the buffer, and to
create dependency arcs by adding them to the set A.

An input sentence w can be parsed using a transition system S = (C, T, cs, Ct)
and an oracle o by starting in the initial configuration cs(w), calling the oracle
function on the current configuration c, and updating the configuration by applying
the transition o(c) returned by the oracle. This process is repeated until a terminal
configuration is reached, and the dependency analysis of the sentence is defined by
the terminal configuration. Each sequence of configurations that the parser can
traverse from an initial configuration to a terminal configuration for some input w
is called a transition sequence.

Note that, apart from a correct transition system, a practical parser needs a good
oracle to achieve the desired results, since a transition system only specifies how to
reach all the possible dependency graphs that could be associated to a sentence, but
not how to select the correct one. Oracles for practical parsers can be obtained by
training classifiers on treebank data [34].
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4 REVERSING THE ARC-EAGER PARSER

4.1 Arc-eager Parser

In this article, we use as our main baseline the well-known parser called pseudo-
projective arc-eager by Nivre and Nilsson [37]. This is the result of adding a pseudo-
projective transformation to the arc-eager parser by Nivre [31]. As a transition-based
parser, the basic arc-eager parser is defined by a transition system S = (C, T, cs, Ct)
such that:

• C is the set of all configurations of the form c = 〈σ,B,A〉, where σ and B are
disjoint lists of nodes from Vw (for some input w), and A is a set of dependency
arcs over Vw. The list B, called the buffer, is used to hold nodes corresponding
to input words that have not yet been read. The list σ, called the stack, contains
nodes for words that have already been read, but still have dependency links
pending to be created. For convenience, we will use the notation σ|i to denote a
stack with top i and tail σ, and the notation j|B to denote a buffer with top j
and tail B. The set A of dependency arcs contains the part of the output parse
that the system has constructed at each given point.

• The initial configuration is cs(w1 . . . wn) = 〈[], [1 . . . n], ∅〉, i.e., the buffer initially
holds the whole input string while the stack is empty.

• The set of terminal configurations is Ct = {〈σ, [], A〉 ∈ C}, i.e., final configu-
rations are those where the buffer is empty, regardless of the contents of the
stack.

• The set T has the following transitions:

Shift 〈σ, i|B,A〉 ⇒ 〈σ|i, B,A〉
Reduce 〈σ|i, B,A〉 ⇒ 〈σ,B,A〉

Left-Arcl 〈σ|i, j|B,A〉 ⇒ 〈σ, j|B,A∪{j l→ i}〉
only if @k | k → i ∈ A (single-head)

Right-Arcl 〈σ|i, j|B,A〉 ⇒ 〈σ|i|j, B,A∪{i l→ j}〉
only if @k | k → j ∈ A (single-head)

The Shift transition is used to read words from the input string, by moving the
next node in the buffer to the top of the stack. The Left-Arc transition creates a
leftward dependency arc from the first node on the buffer to the topmost node on the
stack and pops the stack. The Right-Arc transition builds a rightward dependency
arc from the topmost node on the stack to the first node on the buffer and pushes
the first node on the buffer onto the stack. Finally, the Reduce transition is used
to pop the topmost node from the stack when we have finished building arcs to or
from it.
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Figure 3 shows a transition sequence in the arc-eager transition system which
derives the labelled dependency graph in Figure 2.

Note that the arc-eager parser is a linear-time parser, since each word in the input
can be shifted and reduced at most once, and the number of arcs that can be built by
Left-Arc and Right-Arc transitions is strictly bounded by the number of words
by the single-head constraint. Besides, the arc-eager algorithm by Nivre [31] is not
able to parse non-projective syntactic structures. In order to solve that, the arc-eager
parser by Nivre and Nilsson [37] implements a pseudo-projective transformation,
which projectivizes the non-projective structures so that the arc-eager parser can
handle them.

Transition Stack (σ) Buffer (B) Added Arc

[ROOT0] [This1,...,tree5]
Shift [ROOT0,This1] [is2,..., tree5]
LASBJ [ROOT0] [is2,...,tree5] (2,SBJ,1)
RAROOT [ROOT0, is2] [a3,...,tree5] (0,ROOT,2)
Shift [ROOT0,is2,a3] [dependency4,tree5]
Shift [ROOT0,is2,a3,dependency4] [tree5]
LANMOD [ROOT0,is2,a3] [tree5] (5,NMOD,4)
LADET [ROOT0,is2] [tree5] (5,DET,3)
RAPRED [ROOT0,is2,tree5] [ ] (2,PRED,5)
Reduce [ROOT0,is2] [ ]
Reduce [ROOT0] [ ]

Fig. 3. Transition sequence for parsing the sentence in Figure 2 using the arc-eager parser
(LA=Left-Arc, RA=Right-Arc).

4.2 Reverse Arc-eager Parser

In order to reduce the amount of errors produced in the rightmost side of the depen-
dency tree, we apply a reverse strategy on the arc-eager parser like that of Nilsson
[29]. The reverse arc-eager parser is a right-to-left dependency parser that analyses
a sentence in reverse order. The main advantage of this approach is that it improves
the accuracy of arcs located in the rightmost side of the dependency tree, as well as
those with certain lengths.

The reverse arc-eager variant is defined with the same transition system as the
original arc-eager parser with the difference that, in the initial configuration, the
sentence is put in reverse order. Concretely, the initial configuration cs(w1 . . . wn) =
〈[], [1 . . . n], ∅〉 in the arc-eager transition system is changed into an initial configu-
ration where the sentence is inverted in the buffer: cs(wn . . . w1) = 〈[], [1 . . . n], ∅〉.

Figure 4 describes the transition sequence followed by the reverse arc-eager
parser to analyze the sentence in Figure 2. The result is the dependency tree in
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Figure 5. Note that the dependency graph obtained is the reverse of the one which
appears in Figure 2, except for the dummy root arc, which is not affected by our
reversing process. Therefore, the results in this paper are not influenced by the
effect of placing the dummy root at the end of the sentence, recently studied by
Ballesteros and Nivre [4].

Transition Stack (σ) Buffer (B) Added Arc

[ROOT0] [tree1,...,This5]
Shift [ROOT0,tree1] [dependency2,...,This5]

RANMOD [ROOT0,tree1,dependency2] [a3,...,This5] (1,NMOD,2)

Reduce [ROOT0,tree1] [a3,...,This5]
RADET [ROOT0,tree1,a3] [is4,This5] (1,DET,3)

Reduce [ROOT0,tree1] [is4,This5]
LAPRED [ROOT0] [is4,This5] (4,PRED,1)

RAROOT [ROOT0, is4] [This5] (0,ROOT,4)

RASBJ [ROOT0,is4,This5] [ ] (4,SBJ,5)

Reduce [ROOT0,is4] [ ]
Reduce [ROOT0] [ ]

Fig. 4. Transition sequence for parsing the sentence in Figure 2 using the reverse arc-eager
parser (LA=Left-Arc, RA=Right-Arc).

ROOT0 tree1 dependency2 a3 is4 This5

ROOT

SBJ

PRED

NMOD

DET

Fig. 5. Dependency tree obtained by applying the reverse arc-eager parser on the English
sentence in Figure 2.

5 COMBINING THE ARC-EAGER AND THE REVERSE
ARC-EAGER PARSERS

While the arc-eager parser makes more mistakes in the rightmost side of the graph
due to error propagation, the reverse version achieves better precision on the arcs
created on the rightmost part of the tree. Furthermore, we have observed that some
arcs with certain lengths tend to be correctly built more often by the reverse parser
than by the arc-eager parser. Therefore, a combination of parsers is a logical next
step.
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5.1 Parser Combination System

In this section, we introduce a combination system that takes advantage of the
strengths of each parser and discards their weaknesses. Concretely, the developed
combination system is applied on the dependency trees obtained by the parsers
after the parsing process. This system builds a new dependency tree by selecting
the arcs from one dependency tree or the other according to a certain strategy. The
combination strategies that we use are:

• Position-based strategy: This strategy uses the position of dependents in the
sentence to distinguish which arcs are selected from the first parser and which
from the second parser. This approach is based on the idea that each parser
is good at certain positions of the graph. For instance, if the first parser is
good at doing the leftmost arcs, whose dependents are located from position 1
to 4, and the second parser obtains a higher accuracy on the rest of the arcs,
then the combination system will trust the first parser to build the dependency
graph until position 4, and use the dependency tree of the second parser to
complete the output. In this case, we will say that the combination is done with
a reliability parameter p=4;

• Length-based strategy: This combination technique selects the arcs built by
the first parser or the second parser depending on their length. There are some
parsers that create arcs with a certain length more accurately. For example, if
the first parser builds long arcs with a higher accuracy than the second parser,
then the combination of both parsers will trust the first parser to build long arcs
and will use the arcs created by the second parser to complete the rest. In that
case, if we assume that long arcs are those with a length higher than 15, we will
say that this combination has a reliability parameter l=15.2

In both strategies, firstly it is necessary to identify the order of the parser combi-
nation: which is the first parser and which is the second parser. This is because the
result is not the same if we combine the arc-eager parser plus the reverse variant as
if we use the configuration with reverse arc-eager plus the original version. Secondly,
the reliability parameters must be selected. In the example described above, only
one parameter divides the set of arcs by assigning a certain kind of arcs to a parser.
In the case of the position-based strategy, the parameter p divides the sentence into
two parts: the first part is done by the first parser and the other by the second
parser. On the other hand, the parameter l of the length-based technique divides
the set of arcs in such a way that those with length lower than l are created by the
first parser and those with higher length by the second parser.

2 Note that, when each parser assigns a different head to the same node, the length
of the arcs created by each parser on that node may be different. Therefore, during the
combination process, we trust the length of the arcs produced by the first parser to decide
whether the arcs are longer than the reliability parameter l or not.
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Note that a huge amount of arcs of both parsers can coincide, but it is in
a small set of arcs where parsers differ. In the same way that parsers differ in
the arcs created, they can build the same arcs but assign a different label to the
same dependency link. When that happens, the combination system applies the
strategies described above to decide which parser we should trust to choose the
correct label. For instance, suppose that both parsers create the same arc but they
assign a different label to each arc and suppose that the dependent of these arcs is
situated before p; then if we apply a position-based strategy with a parameter p, the
label used in the new output arc is the label of the arc created by the first parser
and not the one assigned by the second parser.

The implementation of the position-based and the length-based strategies is
described in Figure 6.

Note that this combination process can produce dependency graphs with cycles,
which we do not consider desirable because we wish to obtain dependency forests,
which must satisfy the acyclicity constraint. As we will see in Section 6.3, the
presence of cycles using our approach is significantly low. However, in case that a
cycle is present in the final dependency tree of a given sentence, the combination
process is undone for this sentence and the output obtained by the original arc-
eager parser is chosen as the final dependency tree. This is because, in general, the
arc-eager parser obtains higher scores than the reverse version.

5.2 Example

Using the combination system defined in Section 5.1, we combine the arc-eager and
the reverse arc-eager parsers. Concretely, we detail an artificial example in Figure
7 where the position-based strategy is used to undertake the combination.

Firstly, in Figure 7a we present the dependency tree returned by the reverse
arc-eager parser after analyzing a sentence. Since the reverse parser outputs a de-
pendency tree with nodes in reverse order, we have to invert them in order to con-
tinue with the combination process. The dependency graph obtained after applying
an inverter process is shown in Figure 7b. Note that the analysis made by the re-
verse parser presents two incorrect arcs: the two leftmost arcs ROOT0 → This1 and
This1 → is2. Secondly, Figure 7c presents the dependency tree obtained by the origi-
nal arc-eager parser. In this tree, there are also two mistakes: the incorrect rightmost
arc dependency4 → a3 and the incorrect label DET in arc tree5 → dependency4.
Notice that this example tries to remark that the arc-eager parser has less accu-
racy in rightmost arcs, whilst the reverse variant is worse at creating leftmost arcs.
Finally, the Figure 7d shows the resulting dependency graph after combining the
dependency trees in Figure 7b and Figure 7c. Concretely, the combination system
uses the position-based strategy with a reliability parameter p=2 and the combina-
tion order is arc-eager+reverse. This means that we trust the arc-eager dependency
tree (Figure 7c) to assign head nodes to words located before and at position 2
(ROOT0 → is2, is2 → This1 and is2 → tree5), and we complete the new graph with
arcs tree5 → dependency4 and tree5 → a3 provided by the reverse dependency tree
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Combination_method(dep_tree_1, dep_tree_2):combined_dep_tree
begin
for all dependency_tree_nodes
do
if head_node_1 =/= head_node_2
then

if strategy(head_node_1,dependency_tree_node) <= parameter
then
create_arc(head_node_1,dependency_tree_node,label_node_1)

else
create_arc(head_node_2,dependency_tree_node label_node_2)

else
if label_1 =/= label_2
then

if strategy(head_node_1,dependency_tree_node) <= parameter
then
create_arc(head_node_2,dependency_tree_node,label_node_1)
else
create_arc(head_node_2,dependency_tree_node,label_node_2)

else
create_arc(head_node_2,dependency_tree_node,label_node_2)

done
find_and_process_cycles(combine_dep_tree)
end

Fig. 6. Generic algorithm that combines two dependency trees for a given sentence
(dep tree 1, dep tree 2) and builds a new output (combined dep tree); where the
method strategy returns either the position of the dependent or the length of the
arc defined by the nodes head node 1 and dependency tree node depending on the
strategy used (position-based or length-based, respectively), parameter is either
p or l depending on the strategy followed, dependency tree nodes is the set of nodes
of the input dependency trees (note that, since the sentence analyzed is the same,
the dependency trees 1 and 2 have the same nodes), head node X and label X deter-
mines the head node and the label assigned by a parser X (1 or 2) to the current node
of the dependency tree (dependency tree node) to create an arc, and the function
create arc() builds an arc in the output dependency tree with a certain head and
label. Finally, the method find and process cycles() is in charge of detecting the
arcs involved in a cycle on the resulting combination output and solving them by
trusting only the original arc-eager parser on that sentence.

(Figure 7b). Since we rely on the reverse parser to build the tree5 → dependency4,
the correct label of this arc is taken from the reverse arc-eager dependency tree. As
we can see, the output in Figure 7d solves all the mistakes made by both parsers.

6 EXPERIMENTS

In this section, we evaluate the performance of the reverse arc-eager parser and the
parsers obtained by combining the pseudo-projective arc-eager parser by Nivre and
Nilsson [37] , implemented in MaltParser [35], and its reverse version; using each of
the combination strategies described in Section 5.

In addition we also provide a comparison between our approaches and two
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a)

ROOT0 tree1 dependency2 a3 is4 This5

ROOT

SBJ

PRED

NMOD

DET

b)

ROOT0 This1 is2 a3 dependency4 tree5

ROOT
SBJ

PRED

NMOD

DET

c)

ROOT0 This1 is2 a3 dependency4 tree5

ROOT

SBJ

PRED

DETDET

d)

ROOT0 This1 is2 a3 dependency4 tree5

ROOT

SBJ

PRED

NMOD

DET

Fig. 7. a) Dependency tree of an English sentence analyzed by the reverse arc-eager parser.
b) Dependency tree obtained by inverting the output of the reverse parser in Figure
7a. c) Dependency tree derived by the original arc-eager parser. d) Combination of
the reverse arc-eager dependency tree in Figure 7b and the arc-eager dependency tree
in Figure 7c using the position-based strategy with p=2.
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widely-used parsers: the pseudo-projective arc-eager parser by Nivre and Nilsson
[37] and the maximum spanning tree parser by McDonald et al [28].

Finally, and in order to test our approach more deeply, we provide further exper-
iments on two different transition-based parsers: the pseudo-projective arc-standard
parser [32], also using MaltParser, and the beam-search-based implementation of the
arc-eager parser provided in ZPar [48]. In both cases we combine the original parser
with its reverse variant following the two available strategies.

To undertake these experiments, we use the following datasets: Arabic [19],
Chinese [11], Czech [18], Danish [23], German [8], Portuguese [1], Swedish [30] and
Turkish [38, 2] from the CoNLL-X shared task,3 and the English WSJ corpus from
the Penn Treebank [24] with the same dependency conversion and split as described
in Zhang and Nivre [49]. To measure accuracy, we employ the following standard
evaluation metrics:

• Labelled Attachment Score (LAS): The proportion of tokens (nodes) that
are assigned both the correct head and the correct dependency relation label.

• Unlabelled Attachment Score (UAS): The proportion of tokens (nodes)
that are assigned the correct head (regardless of the dependency relation label).

In our results, we show LAS and UAS without considering punctuation as a scoring
node.

6.1 Greedy Arc-eager Parser Results

Table 1 shows the results obtained by the reverse arc-eager parser with respect to
the original arc-eager parser by Nivre and Nilsson [37].

For our experiments, we used classifiers from the LIBSVM [10] and LIBLINEAR
[15] packages. Concretely, in order to reduce the training time on larger datasets, we
employ the LIBLINEAR package for Chinese, Czech, English and German; and for
the rest of languages, we use SVM classifiers from the LIBSVM package. Feature
models were optimized for each language.4

Note that, unlike the reverse arc-eager parser by Nilsson [29], our version was
specifically tuned for each language independently from the original version, by
performing feature optimization using the training set. This allows for a fairer
comparison between the original and the reverse parsers, since training the reverse
parser with feature models originally optimized for the standard one could introduce

3 These treebanks have been chosen for their representativity, since they cover a wide
range of language families (Germanic, Romance, Semitic, Sino-Tibetan, Slavic, and Tur-
kic); annotation types (e.g. pure dependency annotation in the case of Danish, dependen-
cies extracted from constituents in the case of Chinese, or from discontinuous constituents
in German); and degrees of non-projectivity (ranging from the highly non-projective Czech
and German treebanks to the fully projective Chinese dataset).

4 For replicability, all the feature models are available at http://www.grupolys.org/

~cgomezr/exp/.
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a bias against the former. As we can see, the reverse version has worse performance
than the standard one on all datasets, except in the Czech language dataset.

Table 2 and Table 3 detail the scores attained by the combination of the arc-
eager and reverse arc-eager parsers using the position-based and the length-based
strategies, respectively, in comparison to the original arc-eager parser by Nivre and
Nilsson [37]. In both combination strategies, the reliability parameter and the com-
bination order were determined using exclusively the training dataset by applying a
10-fold cross-validation process. This means that 10 different training-development
set pairs were obtained from the original training dataset to undertake the cross-
validation process.

Table 1. Parsing accuracy of the arc-eager parser (Arc-eager) in comparison to the reverse
arc-eager parser (Reverse).

Arc-eager Reverse

Language LAS UAS LAS UAS

Arabic 67.19 78.42 66.83 78.50
Chinese 87.04 90.78 85.41 89.05
Czech 79.68 85.00 80.40 85.82
Danish 85.51 90.34 84.81 89.62
German 87.30 89.68 86.08 88.40
Portug. 88.04 91.40 86.24 90.18
Swedish 84.58 90.20 81.76 87.79
Turkish 65.80 75.74 65.58 75.94

English (WSJ) 89,09 90,34 88,01 89,14

The results show that the use of the parser combination system with any strategy
improves over the scores of the arc-eager parser on all of the nine datasets tested.
The only cases where the combination of parsers does not outperform the score of
the arc-eager parser is in the English and Portuguese datasets using the length-based
strategy. But even in those cases, the results of the parser combination system are
the same as with the arc-eager baseline.5 The LAS and UAS averages show that the
length-based strategy achieves a higher increment in scores than the position-based
strategy. However, in some languages the position-based approach has a better
performance.

To further put the obtained results into context, we provide the comparison
of the parser combination to the arc-eager parser and another well-known parser.
In order to show the best results of the combination of the original and reverse
arc-eager, we configure them with the best strategy for each language. Concretely,
Table 4 compares the accuracy of the parser combination system to the maximum

5 In fact, the scores in this case are identical to the baseline because the chosen value
for the l parameter is 0, meaning that we trust the first parser on all dependency links
and the second parser on none.
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Table 2. Parsing accuracy of the position-based combination (PosComb) of the arc-eager
parser (ARC) and its reverse variant (REV) in comparison to the original arc-eager
parser (Arc-eager). The parameter p was determined from the training dataset. For
each language, the table shows the value of p and the combination order (ARC+REV
or REV+ARC) that were used, obtained from the cross-validation process.

Arc-eager PosComb

Language LAS UAS LAS UAS p Order

Arabic 67.19 78.42 67.60 78.74 15 ARC+REV
Chinese 87.04 90.78 87.06 90.80 18 ARC+REV
Czech 79.68 85.00 80.98 86.32 7 ARC+REV
Danish 85.51 90.34 85.51 90.46 34 ARC+REV
German 87.30 89.68 87.32 89.66 40 ARC+REV
Portug. 88.04 91.40 88.18 91.40 1 REV+ARC
Swedish 84.58 90.20 84.62 90.22 40 ARC+REV
Turkish 65.80 75.74 66.00 76.20 3 REV+ARC

English (WSJ) 89.09 90.34 89.12 90.37 1 REV+ARC

Average 81.58 86.88 81.82 87.13

spanning tree parser by McDonald et al [28] and the original pseudo-projective arc-
eager parser by Nivre and Nilsson [37]. Note that the arc-eager and the maximum
spanning tree parsers were the two top performing systems in the CoNLL 2006
shared task [9]. For each dataset, the strategy followed to obtain the best score
is shown. As we can see, the combination of the arc-eager parser with its reverse
variant outperforms the score of these two widely-used parsers in all datasets.

6.2 Results with the Arc-standard Model and with Beam Search

Before proceeding to a more in-depth analysis of the results of applying our parser
combination approach to the arc-eager parser, we test the generality of the approach
by performing experiments with a different transition system and with a different
search strategy, and seeing whether it also produces gains in accuracy.

Table 5 shows the results obtained by the greedy pseudo-projective arc-standard
parser [32] and its reverse variant, using MaltParser in the same way as in the
arc-eager model experiments of Section 6.1. Table 6 shows analogous results for
the variant of the arc-eager parser implemented in the ZPar system [48], which
uses global learning and beam search to provide state-of-the-art accuracy, at the
cost of being computationally more expensive than greedy search. These beam
search experiments were performed with the default settings and feature models of
ZPar, but performing the pseudo-projective transformation on the training data and
undoing it on the output parses in order to handle the non-projective treebanks in
the same way as in the greedy implementations.

On the one hand, the original arc-standard algorithm is only outperformed by
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Table 3. Parsing accuracy of the length-based combination (LenComb) of the arc-eager
parser (ARC) and its reverse variant (REV) in comparison to the original arc-eager
parser (Arc-eager). The parameter l was determined from the training dataset. For
each language, the table shows the value of l and the combination order (ARC+REV
or REV+ARC) that were used, obtained from the cross-validation process.

Arc-eager LenComb

Language LAS UAS LAS UAS l Order

Arabic 67.19 78.42 67.56 79.44 2 REV+ARC
Chinese 87.04 90.78 87.06 90.80 19 ARC+REV
Czech 79.68 85.00 80.88 86.22 5 REV+ARC
Danish 85.51 90.34 85.79 90.68 2 REV+ARC
German 87.30 89.68 87.42 89.68 1 REV+ARC
Portug. 88.04 91.40 88.04 91.40 0 REV+ARC
Swedish 84.58 90.20 84.60 90.20 40 ARC+REV
Turkish 65.80 75.74 66.20 76.12 1 REV+ARC

English (WSJ) 89,09 90,34 89,09 90,34 0 REV+ARC

Average 81.58 86.88 81.85 87.21

Table 4. Parsing accuracy of the best combinative configuration detailed in Table 2 and
Table 3 in comparison to the arc-eager parser (Arc-eager) and the maximum span-
ning tree parser (MSTParser) on eight datasets form the CoNLL 2006 shared task.

Arc-eager MSTParser BestCombination

Language LAS UAS LAS UAS LAS UAS Strategy

Arabic 67.19 78.42 66.91 79.34 67.56 79.44 Length-based
Chinese 87.04 90.78 85.90 91.07 87.06 90.80 Length-based
Czech 79.68 85.00 80.18 87.30 80.98 86.32 Position-based
Danish 85.51 90.34 84.79 90.58 85.79 90.68 Length-based
German 87.30 89.68 87.34 90.38 87.42 89.68 Length-based
Portug. 88.04 91.40 86.82 91.36 88.18 91.40 Position-based
Swedish 84.58 90.20 82.55 88.93 84.62 90.22 Position-based
Turkish 65.80 75.74 63.19 74.67 66.20 76.12 Length-based

its reverse version in the Arabic and Czech datasets. Taking into account these
results and those of the reverse arc-eager model in Table 1, we can clearly see that
the reverse strategy by itself is beneficial for the Czech dataset in greedy transition-
based parsing. On the other hand, the reverse variant of the beam-search parser
improves over the original algorithm in five out of nine datasets: it seems that the
beam-search parser takes more advantage of this strategy than the greedy parsers.

Table 7 and Table 8 present the accuracy attained by the combination of the
arc-standard and the reverse arc-standard parsers following the position-based and
the length-based strategies, respectively, in comparison to the original arc-standard
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Table 5. Parsing accuracy of the pseudo-projective arc-standard parser (Arc-standard) in
comparison to the reverse arc-standard parser (Reverse).

Arc-standard Reverse

Language LAS UAS LAS UAS

Arabic 66.69 78.40 67.03 77.66
Chinese 86.22 90.08 84.99 89.58
Czech 80.92 86.72 81.96 87.52
Danish 84.55 89.72 84.35 89.48
German 86.92 89.36 86.38 88.90
Portug. 87.38 90.86 87.12 90.78
Swedish 83.05 88.77 81.94 88.31
Turkish 65.52 75.82 65.15 75.34

English (WSJ) 88.81 90.10 88.79 90,00

Table 6. Parsing accuracy of the beam-search parser (ZPar) in comparison to its reversed
version (Reverse).

ZPar Reverse

Language LAS UAS LAS UAS

Arabic 66.95 77.66 65.33 77.09
Chinese 88.27 92.39 88.31 92.41
Czech 84.16 89.66 82.70 88.70
Danish 86.51 91.30 86.03 90.84
German 90.24 92.45 90.26 92.47
Portug. 88.70 92.53 89.28 92.81
Swedish 85.44 90.86 85.20 90.84
Turkish 65.52 76.00 66.26 76.78

English (WSJ) 91.45 92.50 91.46 92.53

parser [32]. In this case, the length-based strategy also achieves slightly higher
scores than the position-based technique according to the LAS and UAS averages.
However, it is in the length-based strategy where the combination process seems to
be less universally useful, since in three out of nine datasets it does not outperform
the original version. In spite of that, it is worth highlighting the good scores obtained
in general by the position-based and length-based combinations, especially on the
Arabic, Czech and English datasets. In the case of the English language, the length-
based strategy allows the arc-standard parser to achieve an accuracy on par with
the original arc-eager parser (Table 1), which was better without the combination
approach.

Table 9 and Table 10 detail the accuracy obtained by the combination of the orig-
inal and reversed beam-search parsers following the position-based and the length-
based strategies, respectively, in comparison to the original beam-search ZPar parser
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Table 7. Parsing accuracy of the position-based combination (PosComb) of the arc-
standard parser (ARC) and its reverse variant (REV) in comparison to the original
arc-standard parser (Arc-standard). The parameter p was determined from the
training dataset. For each language, the table shows the value of p and the com-
bination order (ARC+REV or REV+ARC) that were used, obtained from the
cross-validation process.

Arc-standard PosComb

Language LAS UAS LAS UAS p Order

Arabic 66.69 78.40 67.88 78.42 11 ARC+REV
Chinese 86.22 90.08 86.22 90.08 25 ARC+REV
Czech 80.92 86.72 82.26 87.70 7 ARC+REV
Danish 84.55 89.72 84.89 89.86 5 REV+ARC
German 86.92 89.36 86.94 89.40 1 REV+ARC
Portug. 87.38 90.86 87.38 90.86 0 REV+ARC
Swedish 83.05 88.77 83.13 88.69 1 REV+ARC
Turkish 65.52 75.34 65.66 76.00 9 ARC+REV

English (WSJ) 88.81 90.10 88.84 90.12 1 REV+ARC

Average 81.12 86.59 81.47 86.79

[48]. As we can see, even though the global learning model and beam-search de-
coding used in this system reduce error propagation with respect to the greedy
algorithms [50], our combination approach still provides clear benefits in terms of
accuracy. In this case, the position-based combination attains higher scores in LAS
and the length-based strategy obtains better scores in UAS according to the LAS
and UAS averages.

6.3 Analysis

It is clear that combination of parsers makes sense when one of them can correctly
analyze some structures that the other cannot and vice versa.

When we combine the arc-eager parser with the reverse arc-eager parser, we
expect the reverse approach to build arcs that the original version is not able to.
This is, in fact, what happened in our experiments. For instance, Figure 8 shows
the precision relative to dependent position in the sentence for the arc-eager parser
(Arceager) and the reverse arc-eager parser (Reverse) on the Czech dataset. We
can see that the precision of the reverse parser is higher than the obtained by the
arc-eager parser from position 8 to the end of the sentence (the rightmost arcs).
Thus, we can use a position-based strategy with p=7 and order ARC+REV to take
advantage of this phenomenon. Indeed, this is what appears in Table 2 for the Czech
dataset.

Note that there are two languages (Portuguese and Turkish) in Table 2 where
the combination order is REV+ARC instead of ARC+REV. This means that the
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Table 8. Parsing accuracy of the length-based combination (LenComb) of the arc-standard
parser (ARC) and its reverse variant (REV) in comparison to the original arc-
standard parser (Arc-standard). The parameter l was determined from the training
dataset. For each language, the table shows the value of l and the combination order
(ARC+REV or REV+ARC) that were used, obtained from the cross-validation
process.

Arc-standard LenComb

Language LAS UAS LAS UAS l Order

Arabic 66.69 78.40 67.86 78.86 3 REV+ARC
Chinese 86.22 90.08 86.22 90.08 20 ARC+REV
Czech 80.92 86.72 82.06 87.50 6 REV+ARC
Danish 84.55 89.72 84.95 90.02 4 REV+ARC
German 86.92 89.36 86.92 89.36 0 REV+ARC
Portug. 87.38 90.86 87.38 90.86 0 REV+ARC
Swedish 83.05 88.77 83.05 88.77 0 REV+ARC
Turkish 65.52 75.34 65.90 76.30 2 REV+ARC

English (WSJ) 88.81 90.10 89.09 90.31 3 REV+ARC

Average 81.12 86.59 81.49 86.90

reverse parser obtains better accuracy on the leftmost arcs than on the rightmost
ones, which is more unusual. Concretely, in these languages the reverse parser
improves the score obtained by the arc-eager parser in arcs originating from the
root node 0 (the leftmost arcs). For instance, the reverse parser achieves a 94.03%
of precision in arcs created from the root node in the Turkish dataset, whilst the
arc-eager obtains 86.97% precision in the same language and doing the same task.
Therefore, if we combine both parsers with a position-based strategy with a low p=3
and order REV+ARC, we will use the strength of the reverse parser on creating root
arcs (usually situated between nodes 1 and 3) in the Turkish dataset, as shown in
Table 2.

In addition to offering improvements at some positions in the sentence, the
reverse arc-eager parser improves over the original version on arcs with a certain
length. For instance, the reverse parser obtains better accuracy on short arcs (length
lower than 5) in the Czech dataset, whilst the original parser achieves better scores
on long arcs. This is shown in Figure 9. Note that, although the reverse parser also
performs better on very long arcs (length larger than 25), it is more important to
take advantage of it in the short arcs because the proportion of short arcs is higher
than that of very long ones. Therefore, a length-based combination with parameter
l=5 and order REV+ARC is the proper configuration to obtain the best results,
and that was the one selected by cross-validation on the training set and described
in Table 3.

Finally, we have to mention that our combinative approach is less sensitive
to cycles than other strategies such as voting. This is probably because we are
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Table 9. Parsing accuracy of the position-based combination (PosComb) of the beam-
search parser (ZP) and its reverse variant (REV) in comparison to the original
beam-search parser (ZPar). The parameter p was determined from the training
dataset. For each language, the table shows the value of p and the combination
order (ZP+REV or REV+ZP) that were used, obtained from the cross-validation
process.

ZPar PosComb

Language LAS UAS LAS UAS p Order

Arabic 66.95 77.66 67.52 78.18 15 ZP+REV
Chinese 88.28 92.39 88.33 92.41 12 ZP+REV
Czech 84.16 89.66 84.34 89.72 30 ZP+REV
Danish 86.51 91.30 86.57 91.18 14 ZP+REV
German 90.24 92.45 90.48 92.63 1 ZP+REV
Portug. 88.70 92.53 88.94 92.59 9 REV+ZP
Swedish 85.44 90.86 85.68 91.10 2 ZP+REV
Turkish 65.52 76.00 66.22 76.74 25 REV+ZP

English (WSJ) 91.45 92.50 91.49 92.55 14 ZP+REV

Average 83.03 88.37 83.29 88.57

working with a single transition-based algorithm (in our main experiments, the arc-
eager parser). Other combinative approaches likely suffer from a high number of
cycles due to joining parsers of different kinds. The percentage of sentences of the
treebank where a cycle is created during our combination process is shown in Table
11. Although the table focuses on the greedy arc-eager parser, the parsers of Section
6.2 yield similar figures. As we can see, the percentage of sentences with cycles is
significantly low and the length-based strategy is more prone to present cycles than
the position-based technique. This is because the position-based combination takes
one part of the output graph from the first parser and the other part from the
second one, in that way, each part of the graph taken does not present inner cycles
(although there could be cycles spanning both parts of the graph at once). However,
the length-based combination creates the output by choosing arcs individually from
each parser regardless of the position, and therefore it has a tendency to cause more
cycles.

7 DISCUSSION

We presented an optimized version of the reverse arc-eager parser introduced by
Nilsson [29]. This is obtained by applying a reverse strategy on the pseudo-projective
arc-eager parser by Nivre and Nilsson [37], which makes this parser analyze a given
sentence in reverse order: from right to left. We found out that the reverse arc-eager
parser can correctly handle some syntactic structures that the original parser cannot.
Initially, we expected a better accuracy of the reverse variant on the rightmost
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Table 10. Parsing accuracy of the length-based combination (LenComb) of the beam-
search parser (ZP) and its reverse variant (REV) in comparison to the original
beam-search parser (ZPar). The parameter l was determined from the training
dataset. For each language, the table shows the value of l and the combination
order (ZP+REV or REV+ZP) that were used, obtained from the cross-validation
process.

ZPar LenComb

Language LAS UAS LAS UAS l Order

Arabic 66.95 77.66 66.77 78.26 1 REV+ZP
Chinese 88.28 92.39 88.57 92.56 1 ZP+REV
Czech 84.16 89.66 84.16 89.66 0 REV+ZP
Danish 86.51 91.30 86.55 91.34 1 REV+ZP
German 90.24 92.45 90.52 92.65 1 REV+ZP
Portug. 88.70 92.53 89.10 92.69 3 REV+ZP
Swedish 85.44 90.86 85.64 91.08 1 ZP+REV
Turkish 65.52 76.00 66.70 77.06 2 REV+ZP

English (WSJ) 91.45 92.50 91.51 92.59 1 REV+ZP

Average 83.03 88.37 83.28 88.65
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Fig. 8. Dependency arc precision relative to position in the sentence, for the arc-eager
parser (Arceager) and the reverse arc-eager parser (Reverse), on the Czech dataset.
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Fig. 9. Dependency arc precision relative to predicted dependency length, for the arc-eager
parser (Arceager) and the reverse arc-eager parser (Reverse) on the Czech dataset.

arcs of the dependency graph as predicted by Nilsson [29]. However, we noticed
that in some languages, such as Turkish, the reverse arc-eager parser performed
better on the leftmost arcs of the graph. In addition to this, we discovered that
the reverse variant produced better results than the arc-eager parser on arcs with
certain lengths.

To take advantage of these findings, we introduced a parser combination sys-
tem, that is able to integrate the dependency trees output by two different parsers
into a new dependency tree that gathers the best of each one. We present two dif-
ferent strategies to undertake the parser combination: the position-based strategy,
which combines the models regarding the position of the arcs in the sentence, and
the length-based combination, which integrates two parsers taking into account the
length of the arcs. We use this combination system to improve the arc-eager parser
by combining it with its reverse variant.

The results obtained show that this approach with any of both strategies pro-
duces improvements in the arc-eager parsing accuracy on all of the nine datasets
used in the experiments and is even able to outperform widely-used dependency
parsers. Moreover, we also showed that this combination process can be success-
fully applied to different dependency parsers such as the arc-standard parser [32],
and different search strategies and learning models such as the global learning and
beam search used in the ZPar parser [48].
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Table 11. Percentage of sentences of each language that presented a cycle during the com-
bination process using the position-based (% Position-based) or the length-based
(% Length-based) strategies with the arc-eager parser.

Language % Position-based % Length-based

Arabic 2.74 17.81
Chinese 0.00 0.00
Czech 1.37 7.40
Danish 0.00 2.17
German 0.00 0.56
Portug. 1.39 0.00
Swedish 0.00 0.00
Turkish 0.32 1.28

English 0.82 0.00

Average 0.74 3.25

In addition, our combination system does not add any extra time complexity
and allows the parallel execution of a parser and its reverse version. Therefore, by
applying this approach on a single parser, more accuracy is achieved in the same
amount of time as if we use this parser in a regular way.6 Thus, our technique is
especially useful in settings where parsing speed is important, so that combination
approaches that incur significant speed penalties are not desirable.

Furthermore, the combination method presented in this article interferes neither
in the learning nor in the parsing process, but is used in a post-parsing step. This
means that it can be applied on any dependency parser, regardless of its nature,
because it does not depend on each parser’s characteristics.

As future work, this system can be extended by adding new combination strate-
gies such as combining two (or more) parsers, where each one is good at doing cer-
tain part of the dependency tree; developing a new direction-based strategy, which
trusts one parser on building the leftward arcs and uses the other parser to create the
rightward arcs; or implementing combination strategies with a range of reliability
parameters, in that way, the combination could be more specific.

Acknowledgements This research has been partially funded by Spanish Min-
istry of Economy and Competitiveness and FEDER (projects TIN2010-18552-C03-
01 and TIN2010-18552-C03-02), Ministry of Education (FPU Grant Program) and
Xunta de Galicia (CN 2012/008, Rede Galega de Procesamento da Linguaxe e Recu-

6 Using the position-based combination, it is even possible to execute the reversed and
the original arc-eager parser in a sequential way, while still spending roughly the same
amount of time as with a single parser. To achieve that, one parser would analyze one
portion of the dependency graph until position p and the other parser would create the
other part of the graph.
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EACL. pp. 77–87. The Association for Computational Linguistics (2012)

[7] Bohnet, B., Nivre, J.: A transition-based system for joint part-of-speech tagging
and labeled non-projective dependency parsing. In: Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning. pp. 1455–1465. EMNLP-CoNLL ’12, Association
for Computational Linguistics, Stroudsburg, PA, USA (2012), http://dl.acm.org/
citation.cfm?id=2390948.2391114

[8] Brants, S., Dipper, S., Hansen, S., Lezius, W., Smith, G.: The tiger tree-
bank. In: Proceedings of the Workshop on Treebanks and Linguistic Theories,
September 20-21. Sozopol, Bulgaria (2002), http://www.coli.uni-sb.de/~sabine/
tigertreebank.pdf

[9] Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency pars-
ing. In: Proceedings of the 10th Conference on Computational Natural Language
Learning (CoNLL). pp. 149–164 (2006)

[10] Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines (2001),
software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm

[11] Chen, K., Luo, C., Chang, M., Chen, F., Chen, C., Huang, C., Gao, Z.:
Sinica treebank: Design criteria, representational issues and implementation. In:
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Arc-Eager Parsing with the Tree Constraint
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The arc-eager system for transition-based dependency parsing is widely used in natural language

processing despite the fact that it does not guarantee that the output is a well-formed dependency

tree. We propose a simple modification to the original system that enforces the tree constraint

without requiring any modification to the parser training procedure. Experiments on multiple

languages show that the method on average achieves 72% of the error reduction possible and

consistently outperforms the standard heuristic in current use.

1. Introduction

One of the most widely used transition systems for dependency parsing is the arc-
eager system first described in Nivre (2003), which has been used as the backbone
for greedy deterministic dependency parsers (Nivre, Hall, and Nilsson 2004; Goldberg
and Nivre 2012), beam search parsers with structured prediction (Zhang and Clark
2008; Zhang and Nivre 2011), neural network parsers with latent variables (Titov and
Henderson 2007), and delexicalized transfer parsers (McDonald, Petrov, and Hall 2011).
However, in contrast to most similar transition systems, the arc-eager system does
not guarantee that the output is a well-formed dependency tree, which sometimes
leads to fragmented parses and lower parsing accuracy. Although various heuristics
have been proposed to deal with this problem, there has so far been no clean the-
oretical solution that also gives good parsing accuracy. In this article, we present a
modified version of the original arc-eager system, which is provably correct for the
class of projective dependency trees, which maintains the linear time complexity of
greedy (or beam search) parsers, and which does not require any modifications to the
parser training procedure. Experimental evaluation on the CoNLL-X data sets show
that the new system consistently outperforms the standard heuristic in current use,
on average achieving 72% of the error reduction possible (compared with 41% for the
old heuristic).
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2. The Problem

The dependency parsing problem is usually defined as the task of mapping a sen-
tence x = w1, . . . , wn to a dependency tree T, which is a directed tree with one node
for each input token wi, plus optionally an artificial root node corresponding to a
dummy word w0, and with arcs representing dependency relations, optionally labeled
with dependency types (Kübler, McDonald, and Nivre 2009). In this article, we will
furthermore restrict our attention to dependency trees that are projective, meaning that
every subtree has a contiguous yield. Figure 1 shows a labeled projective dependency
tree.

Transition-based dependency parsing views parsing as heuristic search through a
non-deterministic transition system for deriving dependency trees, guided by a statisti-
cal model for scoring transitions from one configuration to the next. Figure 2 shows the
arc-eager transition system for dependency parsing (Nivre 2003, 2008). A parser con-
figuration consists of a stack σ, a buffer β, and a set of arcs A. The initial configuration
for parsing a sentence x = w1, . . . , wn has an empty stack, a buffer containing the words
w1, . . . , wn, and an empty arc set. A terminal configuration is any configuration with
an empty buffer. Whatever arcs have then been accumulated in the arc set A defines
the output dependency tree. There are four possible transitions from a configuration

He1
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SBJ

wrote2 her3

� �
?

IOBJ

a4

� �
?

DET

letter5
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?

DOBJ

.6

?
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Figure 1
Projective labeled dependency tree for an English sentence.

Initial: ([ ], [w1, . . . , wn], { })
Terminal: (σ, [ ], A)

Shift: (σ, wi|β, A) ⇒ (σ|wi,β, A)

Reduce: (σ|wi,β, A) ⇒ (σ,β, A) HEAD(wi)

Right-Arc: (σ|wi, wj|β, A) ⇒ (σ|wi|wj,β, A ∪ {wi → wj})
Left-Arc: (σ|wi, wj|β, A) ⇒ (σ, wj|β, A ∪ {wi ← wj}) ¬HEAD(wi)

Figure 2
Arc-eager transition system for dependency parsing. We use | as list constructor, meaning
that σ|wi is a stack with top wi and remainder σ and wj|β is a buffer with head wj and tail β.
The condition HEAD(wi) is true in a configuration (σ,β, A) if A contains an arc wk → wi

(for some k).
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where top is the word on top of the stack (if any) and next is the first word of the
buffer:1

1. Shift moves next to the stack.

2. Reduce pops the stack; allowed only if top has a head.

3. Right-Arc adds a dependency arc from top to next and moves next to the
stack.

4. Left-Arc adds a dependency arc from next to top and pops the stack;
allowed only if top has no head.

The arc-eager system defines an incremental left-to-right parsing order, where left
dependents are added bottom–up and right dependents top–down, which is advanta-
geous for postponing certain attachment decisions. However, a fundamental problem
with this system is that it does not guarantee that the output parse is a projective
dependency tree, only a projective dependency forest, that is, a sequence of adjacent,
non-overlapping projective trees (Nivre 2008). This is different from the closely related
arc-standard system (Nivre 2004), which constructs all dependencies bottom–up and
can easily be constrained to only output trees. The failure to implement the tree con-
straint may lead to fragmented parses and lower parsing accuracy, especially with
respect to the global structure of the sentence. Moreover, even if the loss in accuracy
is not substantial, this may be problematic when using the parser in applications where
downstream components may not function correctly if the parser output is not a well-
formed tree.

The standard solution to this problem in practical implementations, such as Malt-
Parser (Nivre, Hall, and Nilsson 2006), is to use an artificial root node and to attach
all remaining words on the stack to the root node at the end of parsing. This fixes the
formal problem, but normally does not improve accuracy because it is usually unlikely
that more than one word should attach to the artificial root node. Thus, in the error
analysis presented by McDonald and Nivre (2007), MaltParser tends to have very low
precision on attachments to the root node. Other heuristic solutions have been tried,
usually by post-processing the nodes remaining on the stack in some way, but these
techniques often require modifications to the training procedure and/or undermine the
linear time complexity of the parsing system. In any case, a clean theoretical solution to
this problem has so far been lacking.

3. The Solution

We propose a modified version of the arc-eager system, which guarantees that the arc
set A in a terminal configuration forms a projective dependency tree. The new system,
shown in Figure 3, differs in four ways from the old system:

1. Configurations are extended with a boolean variable e, keeping track of
whether we have seen the end of the input, that is, whether we have
passed through a configuration with an empty buffer.

1 For simplicity, we only consider unlabeled parsing here. In labeled parsing, which is used in all
experiments, Right-Arc and Left-Arc also have to select a label for the new arc.
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Initial: ([ ], [w1, . . . , wn], { }, false)

Terminal: ([wi], [ ], A, true)

Shift: (σ, wi|β, A, false) ⇒ (σ|wi,β, A, [[β = [ ]]])

Unshift: (σ|wi, [ ], A, true) ⇒ (σ, [wi], A, true) ¬HEAD(wi)

Reduce: (σ|wi,β, A, e) ⇒ (σ,β, A, e) HEAD(wi)

Right-Arc: (σ|wi, wj|β, A, e) ⇒
(σ|wi|wj,β, A ∪ {wi → wj}, [[e ∨ β = [ ]]])

Left-Arc: (σ|wi, wj|β, A, e) ⇒ (σ, wj|β, A ∪ {wi ← wj}, e) ¬HEAD(wi)

Figure 3
Arc-eager transition system enforcing the tree constraint. The expression [[φ]] evaluates to true if
φ is true and false otherwise.

2. Terminal configurations have the form ([wi], [ ], A, true), that is, they have
an empty buffer, exactly one word on the stack, and e = true.

3. The Shift transition is allowed only if e = false.

4. There is a new transition Unshift, which moves top back to the buffer and
which is allowed only if top has no head and the buffer is empty.

The new system behaves exactly like the old system until we reach a configuration with
an empty buffer, after which there are two alternatives. If the stack contains exactly one
word, we terminate and output a tree, which was true also in the old system. However,
if the stack contains more than one word, we now go on parsing but are forbidden to
make any Shift transitions. After this point, there are two cases. If the buffer is empty,
we make a deterministic choice between Reduce and Unshift depending on whether top
has a head or not. If the buffer is not empty, we non-deterministically choose between
Right-Arc and either Left-Arc or Reduce (the latter again depending on whether top
has a head). Because the new Unshift transition is only used in completely deterministic
cases, we can use the same statistical model to score transitions both before and after we
have reached the end of the input, as long as we make sure to block any Shift transition
favored by the model.

We first show that the new system is still guaranteed to terminate and that the
maximum number of transitions is O(n), where n is the length of the input sentence,
which guarantees linear parsing complexity for greedy (and beam search) parsers with
constant-time model predictions and transitions. From previous results, we know that
the system is guaranteed to reach a configuration of the form (σ, [ ], A) in 2n− k transi-
tions, where k = |σ| (Nivre 2008).2 In any non-terminal configuration arising from this
point on, we can always perform Reduce or Unshift (in case the buffer is empty) or
Right-Arc (otherwise), which means that termination is guaranteed if we can show that
the number of additional transitions is bounded.

2 This holds because we must move n words from the buffer to the stack (in either a Shift or a Right-Arc
transition) and pop n− k words from the stack (in either a Reduce or Left-Arc transition).
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Note first that we can perform at most k− 1 Unshift transitions moving a word back
to the buffer (because a word can only be moved back to the buffer if it has no head,
which can only happen once since Shift is now forbidden).3 Therefore, we can perform
at most k− 1 Right-Arc transitions, moving a word back to the stack and attaching
it to its head. Finally, we can perform at most k− 1 Reduce and Left-Arc transitions,
removing a word from the stack (regardless of whether it has first been moved back
to the buffer). In total, we can thus perform at most 2n− k + 3(k− 1) < 4n transitions,
which means that the number of transitions is O(n).

Having shown that the new system terminates after a linear number of transitions,
we now show that it also guarantees that the output is a well-formed dependency tree.
In order to reach a terminal configuration, we must pop n− 1 words from the stack,
each of which has exactly one incoming arc and is therefore connected to at least one
other node in the graph. Because the word remaining in the stack has no incoming arc
but must be connected to (at least) the last word that was popped, it follows that the
resulting graph is connected with exactly n− 1 arcs, which entails that it is a tree.

It is worth noting that, although the new system can always construct a tree over
the unattached words left on the stack in the first configuration of the form (σ, [ ], A),
it may not be able to construct every possible tree over these nodes. More precisely,
a sequence of words wj, . . . , wk can only attach to a word on the left in the form of
a chain (not as siblings) and can only attach to a word on the right as siblings (not
as a chain). Nevertheless, the new system is both sound and complete for the class
of projective dependency trees, because every terminating transition sequence derives
a projective tree (soundness) and every projective tree is derived by some transition
sequence (completeness). By contrast, the original arc-eager system is complete but not
sound for the class of projective trees.

4. Experiments

In our empirical evaluation we make use of the open-source system MaltParser (Nivre,
Hall, and Nilsson 2006), which is a data-driven parser-generator for transition-based
dependency parsing supporting the use of different transition systems. Besides the
original arc-eager system, which is already implemented in MaltParser, we have added
an implementation of the new modified system. The training procedure used in Malt-
Parser derives an oracle transition sequence for each sentence and gold tree in the
training corpus and uses every configuration–transition pair in these sequences as a
training instance for a multi-class classifier. Because the oracle sequences in the arc-
eager system always produce a well-formed tree, there will be no training instances
corresponding to the extended transition sequences in the new system (i.e., sequences
containing one or more non-terminal configurations of the form (σ, [ ], A)). However,
because the Unshift transition is only used in completely deterministic cases, where the
classifier is not called upon to rank alternative transitions, we can make use of exactly
the same classifier for both the old and the new system.4

We compare the original and modified arc-eager systems on all 13 data sets from the
CoNLL-X shared task on multilingual dependency parsing (Buchholz and Marsi 2006),

3 The number is k− 1, rather than k, because Unshift requires an empty buffer, which together with only
one word on the stack would imply a terminal configuration.

4 Although this greatly simplifies the integration of the new system into existing parsing frameworks, it is
conceivable that accuracy could be improved further through specialized training methods, for example,
using a dynamic oracle along the lines of Goldberg and Nivre (2012). We leave this for future research.
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which all assume the existence of a dummy root word prefixed to the sentence. We tune
the feature representations separately for each language and projectivize the training
data for languages with non-projective dependencies but otherwise use default settings
in MaltParser (including the standard heuristic of attaching any unattached tokens to
the artificial root node at the end of parsing for the original system). Because we want
to perform a detailed error analysis for fragmented parses, we initially avoid using the
dedicated test set for each language and instead report results on a development set
created by splitting off 10% of the training data.

Table 1 (columns 2–3) shows the unlabeled attachment score (including punctua-
tion) achieved with the two systems. We see that the new system improves over the
old one by 0.19 percentage points on average, with individual improvements ranging
from 0.00 (Japanese) to 0.50 (Slovene). These differences may seem quantitatively small,
but it must be remembered that the unattached tokens left on the stack in fragmented
parses constitute a very small fraction of the total number of tokens on which these
scores are calculated. In order to get a more fine-grained picture of the behavior of the
two systems, we therefore zoom in specifically on these tokens in the rest of Table 1.

Column 4 shows the number of unattached tokens left on the stack when reaching
the end of the input (excluding the artificial root node). Column 5 shows for how many
of these tokens the correct head is also on the stack (including the artificial root node).
Both statistics are summed over all sentences in the development set. We see from these
figures that the amount of fragmentation varies greatly between languages, from only
four unattached tokens for Japanese to 230 tokens for Slovene. These tendencies seem
to reflect properties of the data sets, with Japanese having the lowest average sentence
length of all languages and Slovene having a high percentage of non-projective depen-
dencies and a very small training set. They also partly explain why these languages
show the smallest and largest improvement, respectively, in overall attachment score.

Table 1
Experimental results for the old and new arc-eager transition systems (development sets).
UAS = unlabeled attachment score; Stack-Token = number of unattached tokens left in the stack
when reaching the end of the input (excluding the artificial root node); Stack-Head = number of
unattached tokens for which the head is also left in the stack (including the artificial root node);
Correct = number of tokens left in the stack that are correctly attached in the final parser output;
Recall = Correct/Stack-Head (%).

UAS Stack Correct Recall

Language Old New Token Head Old New Old New

Arabic 77.38 77.74 38 24 3 22 12.50 91.67
Bulgarian 90.32 90.42 20 15 7 13 46.67 86.67
Chinese 89.28 89.48 33 31 8 18 25.81 58.06
Czech 83.26 83.46 41 36 8 21 22.22 58.33
Danish 88.10 88.17 29 23 18 22 78.26 95.65
Dutch 86.23 86.49 63 57 13 28 22.80 49.12
German 87.44 87.75 66 39 6 27 15.38 69.23
Japanese 93.53 93.53 4 4 4 4 100.00 100.00
Portuguese 87.68 87.84 44 36 15 26 41.67 72.22
Slovene 76.50 77.00 230 173 50 97 28.90 56.07
Spanish 81.43 81.59 57 42 13 22 30.95 52.38
Swedish 88.18 88.33 43 28 13 24 46.43 85.71
Turkish 81.44 81.45 24 16 9 10 56.25 62.50

Average 85.44 85.63 53.23 40.31 12.85 25.69 40.60 72.12
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Table 2
Results on final test sets. LAS = labeled attachment score. UAS = unlabeled attachment score.

Ara Bul Cze Chi Dan Dut Ger Jap Por Slo Spa Swe Tur Ave

LAS Old 65.90 87.39 86.11 77.82 84.11 77.28 85.42 90.88 83.52 70.30 79.72 83.19 73.92 80.43
New 66.13 87.45 86.27 77.93 84.16 77.37 85.51 90.84 83.76 70.86 79.73 83.19 73.98 80.55

UAS Old 76.33 90.51 89.79 83.09 88.74 79.95 87.92 92.44 86.28 77.09 82.47 88.70 81.09 84.95
New 76.49 90.58 89.94 83.09 88.82 80.18 88.00 92.40 86.33 77.34 82.49 88.76 81.20 85.05

Columns 6 and 7 show, for the old and the new system, how many of the unattached
tokens on the stack are attached to their correct head in the final parser output, as a
result of heuristic root attachment for the old system and extended transition sequences
for the new system. Columns 8 and 9 show the same results expressed in terms of recall
or error reduction (dividing column 6/7 by column 5). These results clearly demonstrate
the superiority of the new system over the old system with heuristic root attachment.
Whereas the old system correctly attaches 40.60% of the tokens for which a head can be
found on the stack, the new system finds correct attachments in 72.12% of the cases. For
some languages, the effect is dramatic, with Arabic improving from just above 10% to
over 90% and German from about 15% to almost 70%, but all languages clearly benefit
from the new technique for enforcing the tree constraint.

Variation across languages can to a large extent be explained by the proportion
of unattached tokens that should be attached to the artificial root node. Because the
old root attachment heuristic attaches all tokens to the root, it will have 100% recall
on tokens for which this is the correct attachment and 0% recall on all other tokens.
This explains why the old system gets 100% recall on Japanese, where all four tokens
left on the stack should indeed be attached to the root. It also means that, on average,
root attachment is only correct for about 40% of the cases (which is the overall recall
achieved by this method). By contrast, the new system only achieves a recall of 82.81%
on root attachments, but this is easily compensated by a recall of 63.50% on non-root
attachments.

For completeness, we report also the labeled and unlabeled attachment scores (in-
cluding punctuation) on the dedicated test sets from the CoNLL-X shared task, shown
in Table 2. The results are perfectly consistent with those analyzed in depth for the
development sets. The average improvement is 0.12 for LAS and 0.10 for UAS. The
largest improvement is again found for Slovene (0.58 LAS, 0.25 UAS) and the smallest
for Japanese, where there is in fact a marginal drop in accuracy (0.04 LAS/UAS).5 For
all other languages, however, the new system is at least as good as the old system
and in addition guarantees a well-formed output without heuristic post-processing.
Moreover, although the overall improvement is small, there is a statistically significant
improvement in either LAS or UAS for all languages except Bulgarian, Czech, Japanese,
Spanish, and Swedish, and in both LAS and UAS on average over all languages accord-
ing to a randomized permutation test (α = .05) (Yeh 2000). Finally, it is worth noting
that there is no significant difference in running time between the old and the new
system.

5 As we saw in the previous analysis, fragmentation happens very rarely for Japanese and all unattached
tokens should normally be attached to the root node, which gives 100% recall for the baseline parser.
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5. Conclusion

In conclusion, we have presented a modified version of the arc-eager transition system
for dependency parsing, which, unlike the old system, guarantees that the output is
a well-formed dependency tree. The system is provably sound and complete for the
class of projective dependency trees, and the number of transitions is still linear in
the length of the sentence, which is important for efficient parsing. The system can be
used without modifying the standard training procedure for greedy transition-based
parsers, because the statistical model used to score transitions is the same as for the
old system. An empirical evaluation on all 13 languages from the CoNLL-X shared task
shows that the new system consistently outperforms the old system with the standard
heuristic of attaching all unattached tokens to the artificial root node. Whereas the
old method only recovers about 41% of the attachments that are still feasible, the new
system achieves an average recall of 72%. Although this gives only a marginal effect on
overall attachment score (at most 0.5%), being able to guarantee that output parses are
always well formed may be critical for downstream modules that take these as input.
Moreover, the proposed method achieves this guarantee as a theoretical property of the
transition system without having to rely on ad hoc post-processing and works equally
well regardless of whether a dummy root word is used or not.
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Abstract

We define a dynamic oracle for the Cov-
ington non-projective dependency parser.
This is not only the first dynamic oracle
that supports arbitrary non-projectivity,
but also considerably more efficient
(O(n)) than the only existing oracle with
restricted non-projectivity support. Ex-
periments show that training with the dy-
namic oracle significantly improves pars-
ing accuracy over the static oracle baseline
on a wide range of treebanks.

1 Introduction

Greedy transition-based dependency parsers build
analyses for sentences incrementally by following
a sequence of transitions defined by an automaton,
using a scoring model to choose the best trans-
ition to take at each state (Nivre, 2008). While
this kind of parsers have become very popular,
as they achieve competitive accuracy with espe-
cially fast parsing times; their raw accuracy is still
behind that of slower alternatives like transition-
based parsers that use beam search (Zhang and
Nivre, 2011; Choi and McCallum, 2013). For this
reason, a current research challenge is to improve
the accuracy of greedy transition-based parsers as
much as possible without sacrificing efficiency.

A relevant recent advance in this direction is
the introduction of dynamic oracles (Goldberg and
Nivre, 2012), an improvement in the training pro-
cedure of greedy parsers that can boost their ac-
curacy without any impact on parsing speed. An
oracle is a training component that selects the best
transition(s) to take at a given configuration, us-
ing knowledge about the gold tree. Traditionally,
transition-based parsers were trained to follow a
so-called static oracle, which is only defined on
the configurations of a canonical computation that
generates the gold tree, returning the next trans-
ition in said computation. In contrast, dynamic

oracles are non-deterministic (not limited to one
sequence, but supporting all the possible computa-
tions leading to the gold tree), and complete (also
defined for configurations where the gold tree is
unreachable, choosing the transition(s) that lead to
a tree with minimum error). This extra robustness
in training provides higher parsing accuracy.

However, defining a usable dynamic oracle for
a given parser is non-trivial in general, due to
the need of calculating the loss of each configura-
tion, i.e., the minimum Hamming loss to the gold
tree from a tree reachable from that configuration.
While it is always easy to do this in exponential
time by simulating all possible computations in
the algorithm to obtain all reachable trees, it is
not always clear how to achieve this calculation
in polynomial time. At the moment, this prob-
lem has been solved for several projective pars-
ers exploiting either arc-decomposability (Gold-
berg and Nivre, 2013) or tabularization of compu-
tations (Goldberg et al., 2014). However, for pars-
ers that can handle crossing arcs, the only known
dynamic oracle (Gómez-Rodrı́guez et al., 2014)
has been defined for a variant of the parser by At-
tardi (2006) that supports a restricted set of non-
projective trees. To our knowledge, no dynamic
oracles are known for any transition-based parser
that can handle unrestricted non-projectivity.

In this paper, we define such an oracle for
the Covington non-projective parser (Covington,
2001; Nivre, 2008), which can handle arbitrary
non-projective dependency trees. As this al-
gorithm is not arc-decomposable and its tabular-
ization is NP-hard (Neuhaus and Bröker, 1997),
we do not use the existing techniques to define
dynamic oracles, but a reasoning specific to this
parser. It is worth noting that, apart from being the
first dynamic oracle supporting unrestricted non-
projectivity, our oracle is very efficient, solving the
loss calculation in O(n). In contrast, the restricted
non-projective oracle of Gómez-Rodrı́guez et al.

119



(2014) has O(n8) time complexity.
The rest of the paper is organized as follows:

after a quick outline of Covington’s parser in
Sect. 2, we present the oracle and prove its cor-
rectness in Sect. 3. Experiments are reported in
Sect. 4, and Sect. 5 contains concluding remarks.

2 Preliminaries

We will define a dynamic oracle for the non-
projective parser originally defined by Covington
(2001), and implemented by Nivre (2008) under
the transition-based parsing framework. For space
reasons, we only sketch the parser very briefly, and
refer to the above reference for more details.

Parser configurations are of the form c =
〈λ1, λ2, B,A〉, where λ1 and λ2 are lists of par-
tially processed words,B is another list (called the
buffer) with currently unprocessed words, andA is
the set of dependencies built so far. Suppose that
we parse a string w1 · · ·wn, whose word occur-
rences will be identified with their indices 1 · · ·n
for simplicity. Then, the parser starts at an initial
configuration cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉,
and executes transitions chosen from those in Fig-
ure 1 until a terminal configuration of the form
{〈λ1, λ2, [], A〉 ∈ C} is reached, and the sen-
tence’s parse tree is obtained from A.1

The transition semantics is very simple, mirror-
ing the double nested loop traversing word pairs in
the formulation by Covington (2001). When the
algorithm is in a configuration 〈λ1|i, λ2, j|B,A〉,
we will say that it is considering the focus words
i and j, located at the end of the first list and at the
beginning of the buffer. A decision is then made
about whether these two words should be linked
with a rightward arc i→ j (Right-Arc transition),
a leftward arc i ← j (Left-Arc transition) or not
linked (No-Arc transition). The first two choices
will be unavailable in configurations where the
newly-created arc would violate the single-head
constraint (a node cannot have more than one in-
coming arc) or the acyclicity constraint (cycles
are not allowed). In any of these three transitions,
i is then moved to the second list to make i−1 and
j the focus words for the next step. Alternatively,
we can choose to read a new word from the string
with a Shift transition, so that the focus words in

1The arcs in A form a forest, but we convert it to a tree by
linking any node without a head as a dependent of an artifi-
cial node at position 0 that acts as a dummy root. From now
on, when we refer to some dependency graph as a tree, we
assume that this transformation is being implicitly made.

the resulting configuration will be j and j + 1.
The result is a parser that can generate any pos-

sible dependency tree for the input, and runs in
quadratic worst-case time. Although in theory this
complexity can seem like a drawback compared to
linear-time transition-based parsers (e.g. (Nivre,
2003; Gómez-Rodrı́guez and Nivre, 2013)), it has
been shown by Volokh and Neumann (2012) to ac-
tually outperform linear algorithms in practice, as
it allows for relevant optimizations in feature ex-
traction that cannot be implemented in other pars-
ers. In fact, one of the fastest dependency parsers
to date uses this algorithm (Volokh, 2013).

3 The oracle

As sketched in Sect. 1, a dynamic oracle is a train-
ing component that, given a configuration c and
a gold tree tG, provides the set of transitions that
are applicable in c and lead to trees with minimum
Hamming loss with respect to tG. The Hamming
loss between a tree t and tG, written L(t, tG), is
the number of nodes that have a different head in t
than in tG. Following Goldberg and Nivre (2013),
we say that a set of arcs A is reachable from con-
figuration c, written c  A, if there is some (pos-
sibly empty) path of transitions from c to some
configuration c′ = 〈λ1, λ2, B,A′〉, with A ⊆ A′.
Then, we can define the loss of a configuration as

`(c) = min
t|c t

L(t, tG),

and the set of transitions that must be returned by
a correct dynamic oracle is then

od(c, tG) = {τ | `(c)− `(τ(c)) = 0},

i.e., the transitions that do not increase configur-
ation loss, and hence lead to the best parse (in
terms of loss) reachable from c. Therefore, imple-
menting a dynamic oracle reduces to computing
the loss `(c) for each configuration c.

Goldberg and Nivre (2013) show that the calcu-
lation of the loss is easy for parsers that are arc-
decomposable, i.e., those where for every config-
uration c and arc setA that is tree-compatible (i.e.
that can be a part of a well-formed parse2), c A
is entailed by c  (i → j) for every i → j ∈ A.
That is, if each arc in a tree-compatible set is indi-
vidually reachable from configuration c, then that

2In the cited paper, tree-compatibility required projectiv-
ity, as the authors were dealing with projective parsers. In
our case, since the parser is non-projective, tree-compatibility
only consists of the single-head and acyclicity constraints.
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Shift: 〈λ1, λ2, j|B,A〉 ⇒ 〈λ1 · λ2|j, [], B,A〉
No-Arc: 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
Left-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {j → i}〉

only if @k | k → i ∈ A (single-head) and i→∗ j 6∈ A (acyclicity).

Right-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {i→ j}〉
only if @k | k → j ∈ A (single-head) and j →∗ i 6∈ A (acyclicity).

Figure 1: Transitions of the Covington non-projective dependency parser.

0 1 2 3 4

Figure 2: An example of non-arc-decomposability
of the Covington parser: graphical representation
of configuration c = 〈[1, 2], [], [3, 4], A = {1 →
2}〉. The solid arc corresponds to the arc set A,
and the circled indexes mark the focus words. The
dashed arcs represent the gold tree tG.

set of arcs is reachable from c. If this holds, then
computing the loss of a configuration c reduces to
determining and counting the gold arcs that are not
reachable from c, which is easy in most parsers.

Unfortunately, the Covington parser is not arc-
decomposable. This can be seen in the example of
Figure 2: while any of the gold arcs 2→3, 3→4,
4→1 can be reachable individually from the depic-
ted configuration, they are not jointly reachable as
they form a cycle with the already-built arc 1→2.
Thus, the configuration has only one individually
unreachable arc (0→2), but its loss is 2.

However, it is worth noting that non-arc-
decomposability in the parser is exclusively due
to cycles. If a set of individually reachable arcs do
not form a cycle together with already-built arcs,
then we can show that the set will be reachable.
This idea is the basis for an expression to compute
loss based on counting individually unreachable
arcs, and then correcting for the effect of cycles:

Theorem 1 Let c = 〈λ1, λ2, B,A〉 be a config-
uration of the Covington parser, and tG the set of
arcs of a gold tree. We call I(c, tG) = {x → y ∈
tG | c  (x → y)} the set of individually reach-
able arcs of tG; note that this set may overlap A.
Conversely, we call U(c, tG) = tG \ I(c, tG) the
set of individually unreachable arcs of tG from c.
Finally, let nc(G) denote the number of cycles in

a graph G.
Then `(c) = |U(c, tG)|+ nc(A ∪ I(c, tG)). 2

We now sketch the proof. To prove Theorem 1,
it is enough to show that (1) there is at least one
tree reachable from c with exactly that Hamming
loss to tG, and (2) there are no trees reachable from
cwith a smaller loss. To this end, we will use some
properties of the graphA∪I(c, tG). First, we note
that no node in this graph has in-degree greater
than 1. In particular, each node except for the
dummy root has exactly one head, either explicit
or (if no head has been assigned inA or in the gold
tree) the dummy root. No node has more than one
head: a node cannot have two heads in A because
the parser transitions enforce the single-head con-
straint, it cannot have two heads in I(c, tG) be-
cause tG must satisfy this constraint as well, and it
cannot have one head in A and another in I(c, tG)
because the corresponding arc in I(c, tG) would
be unreachable due to the single-head constraint.

This, in turn, implies that the graphA∪I(c, tG)
has no overlapping cycles, as overlapping cycles
can only appear in graphs with in-degree greater
than 1. This is the key property enabling us to
exactly calculate loss using the number of cycles.

To show (1), consider the graph A ∪ I(c, tG).
In each of its cycles, there is at least one arc
that belongs to I(c, tG), as A must satisfy the
acyclicity constraint. We arbitrarily choose one
such arc from each cycle, and remove it from
the graph. Note that this results in removing ex-
actly nc(A ∪ I(c, tG)) arcs, as we have shown
that the cycles in A ∪ I(c, tG) are disjoint. We
call the resulting graph B(c, tG). As it has max-
imum in-degree 1 and it is acyclic (because we
have broken all the cycles), B(c, tG) is a tree, mod-
ulo our standard assumption that headless nodes
are assumed to be linked to the dummy root.

This tree B(c, tG) is reachable from c and has
loss `(c) = |U(c, tG)|+nc(A∪I(c, tG)). Reach-
ability is shown by building a sequence of trans-
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itions that will visit the pairs of words corres-
ponding to remaining arcs in order, and inter-
calating the corresponding Left-Arc or Right-Arc
transitions, which cannot violate the acyclicity or
single-head constraints. The term U(c, tG) in the
loss stems from the fact that A ∪ I(c, tG) can-
not contain arcs in U(c, tG), and the term nc(A ∪
I(c, tG)) from not including the nc(A ∪ I(c, tG))
arcs that we discarded to break cycles.

Finally, from these observations, it is easy to
see that B(c, tG) has the best loss among reach-
able trees, and thus prove (2): the arcs in U(c, tG)
are always unreachable by definition, and for each
cycle in nc(A ∪ I(c, tG)), the acyclicity con-
straint forces us to miss at least one arc. As
the cycles are disjoint, this means that we neces-
sarily miss at least nc(A ∪ I(c, tG)) arcs, hence
|U(c, tG)| + nc(A ∪ I(c, tG)) is indeed the min-
imum loss among reachable trees. �

Thus, to calculate the loss of a configuration c,
we only need to compute both of the terms in The-
orem 1. For the first term, note that if c has focus
words i and j (i.e., c = 〈λ1|i, λ2, j|B,A〉), then
an arc x→ y is in U(c, tG) if it is not in A, and at
least one of the following holds:
• j > max(x, y), as in this case we have read

too far in the string and will not be able to get
x and y as focus words,
• j = max(x, y) ∧ i < min(x, y), as in this

case we have max(x, y) as the right focus
word but the left focus word is to the left of
min(x, y), and we cannot move it back,
• there is some z 6= 0, z 6= x such that z → y ∈
A, as in this case the single-head constraint
prevents us from creating x→ y,
• x and y are on the same weakly connected

component of A, as in this case the acyclicity
constraint will not let us create x→ y.

All of these arcs can be trivially enumerated in
O(n) time (in fact, they can be updated in O(1)
if we start from the configuration that preceded c).
The second term of the loss, nc(A∪I(c, tG)), can
be computed by obtaining I(c, tG) as tG\U(c, tG)
to then apply a standard cycle-finding algorithm
(Tarjan, 1972) which, for a graph with maximum
in-degree 1, runs in O(n) time.

Algorithm 1 presents the resulting loss cal-
culation algorithm in pseudocode form, where
COUNTCYCLES is a function that counts the num-
ber of cycles in the given graph in linear time as
mentioned above. Note that the for loop runs in

Algorithm 1 Computation of the loss of a config-
uration.

1: function LOSS(c = 〈λ1|i, λ2, j|B,A〉, tG)
2: U ← ∅ . Variable U is for U(c, tG)
3: for each x→ y ∈ (tG \A) do
4: left ← min(x, y)
5: right ← max(x, y)
6: if j > right ∨
7: (j = right ∧ i < left)∨
8: (∃z > 0, z 6= x : z → y ∈ A)∨
9: WEAKLYCONNECTED(A, x, y) then

10: U ← u ∪ {x→ y}
11: I ← tG \U . Variable I is for I(c, tG)
12: return |U |+ COUNTCYCLES(A ∪ I )

linear time: the condition on line 8 can be com-
puted in constant time by recovering the head of
y. The call to WEAKLYCONNECTED in line 9
finds out whether the two given nodes are weakly
connected in A, and can also be resolved in
O(1), by querying the disjoint set data structure
that implementations of the Covington algorithm
commonly use for the parser’s acyclicity checks
(Nivre, 2008).

It is worth noting that the linear-time com-
plexity can also be achieved by a standalone im-
plementation of the loss calculation algorithm,
without recurse to the parser’s auxiliary data struc-
tures (although this is dubiously practical). To
do so, we can implement WEAKLYCONNECTED

so that the first call computes the connected com-
ponents of A in linear time (Hopcroft and Tarjan,
1973) and subsequent calls use this information to
find out if two nodes are weakly connected in con-
stant time.

On the other hand, a more efficient implementa-
tion than the one shown in Algorithm 1 (which we
chose for clarity) can be achieved by more tightly
coupling the oracle to the parser, as the relevant
sets of arcs associated with a configuration can be
obtained incrementally from those of the previous
configuration.

4 Experiments

To evaluate the performance of our approach, we
conduct experiments on both static and dynamic
Covington non-projective oracles. Concretely, we
train an averaged perceptron model for 15 itera-
tions on nine datasets from the CoNLL-X shared
task (Buchholz and Marsi, 2006) and all data-
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Unigrams
L0w; L0p; L0wp; L0l; L0hw; L0hp; L0hl; L0l′w; L0l′p;
L0l′ l; L0r′w; L0r′p; L0r′ l; L0h2w; L0h2p; L0h2l; L0lw;
L0lp; L0ll; L0rw; L0rp; L0rl; L0wd; L0pd;
L0wvr; L0pvr; L0wvl; L0pvl; L0wsl; L0psl; L0wsr;
L0psr; L1w; L1p; L1wp; R0w; R0p; R0wp; R0l′w;
R0l′p; R0l′ l; R0lw; R0lp; R0ll; R0wd; R0pd; R0wvl;
R0pvl;R0wsl; R0psl; R1w; R1p; R1wp; R2w; R2p;
R2wp; CLw; CLp; CLwp; CRw; CRp; CRwp;
Pairs
L0wp+R0wp; L0wp+R0w; L0w+R0wp; L0wp+R0p;
L0p+R0wp; L0w+R0w; L0p+R0p;R0p+R1p;
L0w+R0wd; L0p+R0pd;
Triples
R0p+R1p+R2p; L0p+R0p+R1p; L0hp+L0p+R0p;
L0p+L0l′p+R0p; L0p+L0r′p+R0p; L0p+R0p+R0l′p;
L0p+L0l′p+L0lp; L0p+L0r′p+L0rp;
L0p+L0hp+L0h2p; R0p+R0l′p+R0lp;

Table 1: Feature templates. L0 and R0 denote
the left and right focus words; L1, L2, . . . are the
words to the left of L0 and R1, R2, . . . those to the
right of R0. Xih means the head of Xi, Xih2 the
grandparent, Xil and Xil′ the farthest and closest
left dependents, and Xir and Xir′ the farthest and
closest right dependents, respectively. CL and
CR are the first and last words between L0 andR0

whose head is not in the interval [L0, R0]. Finally,
w stands for word form; p for PoS tag; l for de-
pendency label; d is the distance between L0 and
R0; vl, vr are the left/right valencies (number of
left/right dependents); and sl, sr the left/right label
sets (dependency labels of left/right dependents).

sets from the CoNLL-XI shared task (Nivre et al.,
2007). We use the same feature templates for all
languages, which result from adapting the features
described by Zhang and Nivre (2011) to the data
structures of the Covington non-projective parser,
and are listed in detail in Table 1.

Table 2 reports the accuracy obtained by the
Covington non-projective parser with both or-
acles. As we can see, the dynamic oracle imple-
mented in the Covington algorithm improves over
the accuracy of the static version on all datasets
except Japanese and Swedish, and most improve-
ments are statistically significant at the .05 level.3

In addition, the Covington dynamic oracle
achieves a greater average improvement in ac-
curacy than the Attardi dynamic oracle (Gómez-
Rodrı́guez et al., 2014) over their respective static
versions. Concretely, the Attardi oracle accom-
plishes an average improvement of 0.52 percent-

3Note that the loss of accuracy in Japanese and Swedish
is not statistically significant.

s-Covington d-Covington
Language UAS LAS UAS LAS
Arabic 80.03 71.32 81.47∗ 72.77∗
Basque 75.76 69.70 76.49∗ 70.27∗
Catalan 88.66 83.92 89.28 84.26
Chinese 83.94 79.59 84.68∗ 80.16∗
Czech 77.38 71.21 78.58∗ 72.59∗
English 84.64 83.72 86.14∗ 84.96∗
Greek 79.33 72.65 80.52∗ 73.67∗
Hungarian 77.70 74.32 78.22 74.61
Italian 83.39 79.66 83.66 79.91
Turkish 82.14 76.00 82.38 76.15
Bulgarian 87.68 84.55 88.48∗ 85.32∗
Danish 84.07 79.99 84.98∗ 80.85∗
Dutch 80.28 77.55 81.17∗ 78.54∗
German 86.12 83.93 87.47∗ 85.15∗
Japanese 93.92 92.51 93.79 92.42
Portuguese 85.70 82.78 86.23 83.27
Slovene 75.31 68.97 76.76∗ 70.35∗
Spanish 78.82 75.84 79.87∗ 76.97∗
Swedish 86.78 81.29 86.66 81.21
Average 82.72 78.39 83.52 79.13

Table 2: Parsing accuracy (UAS and LAS, in-
cluding punctuation) of Covington non-projective
parser with static (s-Covington) and dynamic (d-
Covington) oracles on CoNLL-XI (first block) and
CoNLL-X (second block) datasets. For each lan-
guage, we run five experiments with the same
setup but different seeds and report the averaged
accuracy. Best results for each language are shown
in boldface. Statistically significant improvements
(α = .05) (Yeh, 2000) are marked with ∗.

age points in UAS and 0.71 in LAS, while our ap-
proach achieves 0.80 in UAS and 0.74 in LAS.

5 Conclusion

We have defined the first dynamic oracle for
a transition-based parser supporting unrestricted
non-projectivity. The oracle is very efficient, com-
puting loss in O(n), compared to O(n8) for the
only previously known dynamic oracle with sup-
port for a subset of non-projective trees (Gómez-
Rodrı́guez et al., 2014).

Experiments on the treebanks from the CoNLL-
X and CoNLL-XI shared tasks show that the dy-
namic oracle significantly improves accuracy on
many languages over a static oracle baseline.
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Abstract

We reduce phrase-based parsing to depen-
dency parsing. Our reduction is grounded
on a new intermediate representation,
“head-ordered dependency trees,” shown
to be isomorphic to constituent trees. By
encoding order information in the depen-
dency labels, we show that any off-the-
shelf, trainable dependency parser can be
used to produce constituents. When this
parser is non-projective, we can perform
discontinuous parsing in a very natural
manner. Despite the simplicity of our ap-
proach, experiments show that the result-
ing parsers are on par with strong base-
lines, such as the Berkeley parser for En-
glish and the best non-reranking system
in the SPMRL-2014 shared task. Results
are particularly striking for discontinuous
parsing of German, where we surpass the
current state of the art by a wide margin.

1 Introduction

Constituent parsing is a central problem in
NLP—one at which statistical models trained on
treebanks have excelled (Charniak, 1996; Klein
and Manning, 2003; Petrov and Klein, 2007).
However, most existing parsers are slow, since
they need to deal with a heavy grammar con-
stant. Dependency parsers are generally faster, but
less informative, since they do not produce con-
stituents, which are often required by downstream
applications (Johansson and Nugues, 2008; Wu et
al., 2009; Berg-Kirkpatrick et al., 2011; Elming et
al., 2013). How to get the best of both worlds?

Coarse-to-fine decoding (Charniak and John-
son, 2005) and shift-reduce parsing (Sagae and
Lavie, 2005; Zhu et al., 2013) were a step forward

∗This research was carried out during an internship at
Priberam Labs.

to accelerate constituent parsing, but typical run-
times still lag those of dependency parsers. This
is only made worse if discontinuous constituents
are allowed—such discontinuities are convenient
to represent wh-movement, scrambling, extrapo-
sition, and other linguistic phenomena common in
free word order languages. While non-projective
dependency parsers, which are able to model such
phenomena, have been widely developed in the
last decade (Nivre et al., 2007; McDonald et al.,
2006; Martins et al., 2013), discontinuous con-
stituent parsing is still taking its first steps (Maier
and Søgaard, 2008; Kallmeyer and Maier, 2013).

In this paper, we show that an off-the-shelf,
trainable, dependency parser is enough to build
a highly-competitive constituent parser. This (sur-
prising) result is based on a reduction1 of con-
stituent to dependency parsing, followed by a sim-
ple post-processing procedure to recover unaries.
Unlike other constituent parsers, ours does not
require estimating a grammar, nor binarizing the
treebank. Moreover, when the dependency parser
is non-projective, our method can perform discon-
tinuous constituent parsing in a very natural way.

Key to our approach is the notion of head-
ordered dependency trees (shown in Figure 1):
by endowing dependency trees with this additional
layer of structure, we show that they become iso-
morphic to constituent trees. We encode this struc-
ture as part of the dependency labels, enabling
a dependency-to-constituent conversion. A re-
lated conversion was attempted by Hall and Nivre
(2008) to parse German, but their complex encod-
ing scheme blows up the number of arc labels, af-
fecting the final parser’s quality. By contrast, our
light encoding achieves a 10-fold decrease in the
label alphabet, leading to more accurate parsing.

While simple, our reduction-based parsers are
on par with the Berkeley parser for English (Petrov

1The title of this paper is inspired by the seminal paper of
Pereira and Warren (1983) “Parsing as Deduction.”
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and Klein, 2007), and with the best single system
in the recent SPMRL shared task (Seddah et al.,
2014), for eight morphologically rich languages.
For discontinuous parsing, we surpass the current
state of the art by a wide margin on two German
datasets (TIGER and NEGRA), while achieving fast
parsing speeds. We provide a free distribution of
our parsers along with this paper, as part of the
TurboParser toolkit.2

2 Background

We start by reviewing constituent and dependency
representations, and setting up the notation. Fol-
lowing Kong and Smith (2014), we use c-/d- pre-
fixes for convenience (e.g., we write c-parser for
constituent parser and d-tree for dependency tree).

2.1 Constituent Trees

Constituent-based representations are commonly
seen as derivations according to a context-free
grammar (CFG). Here, we focus on properties
of the c-trees, rather than of the grammars used
to generate them. We consider a broad scenario
that permits c-trees with discontinuities, such as
the ones derived with linear context-free rewrit-
ing systems (LCFRS; Vijay-Shanker et al. (1987)).
We also assume that the c-trees are lexicalized.

Formally, let w1w2 . . . wL be a sentence, where
wi denotes the word in the ith position. A c-
tree is a rooted tree whose leaves are the words
{wi}Li=1, and whose internal nodes (constituents)
are represented as a tuple 〈Z, h, I〉, where Z
is a non-terminal symbol, h ∈ {1, . . . , L} in-
dicates the lexical head, and I ⊆ {1, . . . , L}
is the node’s yield. Each word’s parent is a
pre-terminal unary node of the form 〈pi, i, {i}〉,
where pi denotes the word’s part-of-speech (POS)
tag. The yields and lexical heads are defined so
that for every constituent 〈Z, h, I〉 with children
{〈Xk,mk,Jk〉}Kk=1, (i) we have I =

⋃K
k=1 Jk;

and (ii) there is a unique k such that h = mk. This
kth node (called the head-child node) is commonly
chosen applying a handwritten set of head rules
(Collins, 1999; Yamada and Matsumoto, 2003).

A c-tree is continuous if all nodes 〈Z, h, I〉
have a contiguous yield I, and discontinuous oth-
erwise. Trees derived by a CFG are always con-
tinuous; those derived by a LCFRS may have dis-
continuities, the yield of a node being a union of
spans, possibly with gaps in the middle. Figure 1

2http://www.ark.cs.cmu.edu/TurboParser

shows an example of a continuous and a discontin-
uous c-tree. Discontinuous c-trees have crossing
branches, if the leaves are drawn in left-to-right
surface order. An internal node which is not a pre-
terminal is called a proper node. A node is called
unary if it has exactly one child. A c-tree with-
out unary proper nodes is called unaryless. If all
proper nodes have exactly two children then it is
called a binary c-tree. Continuous binary trees
may be regarded as having been generated by a
CFG in Chomsky normal form.

Prior work. There has been a long string of
work in statistical c-parsing, shifting from sim-
ple models (Charniak, 1996) to more sophisticated
ones using structural annotation (Johnson, 1998;
Klein and Manning, 2003), latent grammars (Mat-
suzaki et al., 2005; Petrov and Klein, 2007), and
lexicalization (Eisner, 1996; Collins, 1999). An
orthogonal line of work uses ensemble or rerank-
ing strategies to further improve accuracy (Char-
niak and Johnson, 2005; Huang, 2008; Björkelund
et al., 2014). Discontinuous c-parsing is con-
sidered a much harder problem, involving mildly
context-sensitive formalisms such as LCFRS or
range concatenation grammars, with treebank-
derived c-parsers exhibiting near-exponential run-
time (Kallmeyer and Maier, 2013, Figure 27).
To speed up decoding, prior work has consid-
ered restrictons, such as bounding the fan-out
(Maier et al., 2012) and requiring well-nestedness
(Kuhlmann and Nivre, 2006; Gómez-Rodrı́guez et
al., 2010). Other approaches eliminate the dis-
continuities via tree transformations (Boyd, 2007;
Kübler et al., 2008), sometimes as a pruning step
in a coarse-to-fine parsing approach (van Cranen-
burgh and Bod, 2013). However, reported run-
times are still superior to 10 seconds per sentence,
which is not practical. Recently, Versley (2014a)
proposed an easy-first approach that leads to con-
siderable speed-ups, but is less accurate. In this
paper, we design fast discontinuous c-parsers that
outperform all the ones above by a wide margin,
with similar runtimes as Versley (2014a).

2.2 Dependency Trees

In this paper, we use d-parsers as a black box to
parse constituents. Given a sentence w1 . . . wL,
a d-tree is a directed tree spanning all the words
in the sentence.3 Each arc in this tree is a tuple

3We assume throughout that dependency trees have a sin-
gle root among {w1, . . . , wL}. Therefore, there is no need to
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Figure 1: Top: a continuous (left) and a discontinuous (right) c-tree, taken from English PTB §22 and German NEGRA,
respectively. Head-child nodes are in bold. Bottom: corresponding head-ordered d-trees. The indices #1, #2, etc. denote the
order of attachment events for each head. Note that the English unary nodes ADVP and ADJP are dropped in the conversion.
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Figure 2: Three different c-structures for the VP “really needs
caution.” All are consistent with the d-structure at the top left.

〈h,m, `〉, expressing a typed dependency relation
` between the head word wh and the modifier wm.

A d-tree is projective if for every arc 〈h,m, `〉
there is a directed path from h to all words that lie
between h and m in the surface string (Kahane et
al., 1998). Projective d-trees can be obtained from
continuous c-trees by reading off the lexical heads
and dropping the internal nodes (Gaifman, 1965).
However, this relation is many-to-one: as shown
in Figure 2, several c-trees may project onto the
same d-tree, differing on their flatness and on left
or right-branching decisions. In the next section,
we introduce the concept of head-ordered d-trees
and express one-to-one mappings between these
two representations.

Prior work. There has been a considerable
amount of work developing rich-feature d-parsers.
While projective d-parsers can use dynamic pro-
gramming (Eisner and Satta, 1999; Koo and

consider an extra root symbol, as often done in the literature.

Collins, 2010), non-projective d-parsers typically
rely on approximate decoders, since the underly-
ing problem is NP-hard beyond arc-factored mod-
els (McDonald and Satta, 2007). An alternative
are transition-based d-parsers (Nivre et al., 2006;
Zhang and Nivre, 2011), which achieve observed
linear time. Since d-parsing algorithms do not
have a grammar constant, typical implementations
are significantly faster than c-parsers (Rush and
Petrov, 2012; Martins et al., 2013). The key con-
tribution of this paper is to reduce c-parsing to d-
parsing, allowing to bring these runtimes closer.

3 Head-Ordered Dependency Trees

We next endow d-trees with another layer of struc-
ture, namely order information. In this frame-
work, not all modifiers of a head are “born equal.”
Instead, their attachment to the head occurs as
a sequence of “events,” which reflect the head’s
preference for attaching some modifiers before
others. As we will see, this additional structure
will undo the ambiguity expressed in Figure 2.

3.1 Strictly Ordered Dependency Trees

Let us start with the simpler case where the attach-
ment order is strict. For each head word h with
modifiers Mh = {m1, . . . ,mK}, we endow Mh

with a strict order relation ≺h, so we can or-
ganize all the modifiers of h as a chain, mi1 ≺h

mi2 ≺h . . . ≺h miK . We regard this chain as
reflecting the order by which words are attached
(i.e., if mi ≺h mj this means that “mi is attached
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Figure 3: Transformation of a strictly-ordered d-tree into a
binary c-tree. Each node is split into a linked list forming a
spine, to which modifiers are attached in order.

Figure 4: Two discontinuous constructions caused by a non-
nested order (top) and a non-projective d-tree (bottom). In
both cases node A has a non-contiguous yield.

to h before mj”). We represent this graphically
by decorating d-arcs with indices (#1,#2, . . .) to
denote the order of events, as we do in Figure 1.

A d-tree endowed with a strict order for each
head is called a strictly ordered d-tree. We es-
tablish below a correspondence between strictly
ordered d-trees and binary c-trees. Before doing
so, we need a few more definitions about c-trees.
For each word position h ∈ {1, . . . , L}, we define
ψ(h) as the node higher in the c-tree whose lexi-
cal head is h. We call the path from ψ(h) down to
the pre-terminal ph the spine of h. We may regard
a c-tree as a set of L spines, one per word, which
attach to each other to form a tree (Carreras et al.,
2008). We then have the following

Proposition 1. Binary c-trees and strictly-ordered
d-trees are isomorphic, i.e., there is a one-to-one
correspondence between the two sets, where the
number of symbols is preserved.

Proof. We use the construction in Figure 3. A for-
mal proof is given as supplementary material.

3.2 Weakly Ordered Dependency Trees
Next, we relax the strict order assumption, restrict-
ing the modifier sets Mh = {m1, . . . ,mK} to be
only weakly ordered. This means that we can par-
tition the K modifiers into J equivalence classes,
Mh =

⋃J
j=1 M̄

j
h, and define a strict order ≺h on

the quotient set: M̄1
h ≺h . . . ≺h M̄

J
h . Intuitively,

there is still a sequence of events (1 to J), but now
at each event j it may happen that multiple mod-
ifiers (the ones in the equivalence set M̄ j

h) are si-

Algorithm 1 Conversion from c-tree to d-tree

Input: c-tree C.
Output: head-ordered d-tree D.
1: Nodes := GETPOSTORDERTRAVERSAL(C).
2: Set j(h) := 1 for every h = 1, . . . , L.
3: for v := 〈Z, h, I〉 ∈ Nodes do
4: for every u := 〈X,m,J 〉 which is a child of v do
5: if m 6= h then
6: Add toD an arc 〈h,m,Z〉, and put it in M̄ j(h)

h .
7: end if
8: end for
9: Set j(h) := j(h) + 1.

10: end for

multaneously attached to h. A weakly ordered
d-tree is a d-tree endowed with a weak order for
each head and such that any pairm,m′ in the same
equivalence class (written m ≡h m′) receive the
same dependency label `.

We now show that Proposition 1 can be gener-
alized to weakly ordered d-trees.

Proposition 2. Unaryless c-trees and weakly-
ordered d-trees are isomorphic.

Proof. This is a simple extension of Proposition 1.
The construction is the same as in Figure 3, but
now we can collapse some of the nodes in the
linked list, originating multiple modifiers attach-
ing to the same position of the spine—this is only
possible for sibling arcs with the same index and
arc label. Note, however, that if we start with a
c-tree with unary nodes and apply the inverse pro-
cedure to obtain a d-tree, the unary nodes will be
lost, since they do not involve attachment of mod-
ifiers. In a chain of unary nodes, only the last node
is recovered in the inverse transformation.

We emphasize that Propositions 1–2 hold with-
out blowing up the number of symbols. That is,
the dependency label alphabet is exactly the same
as the set of phrasal symbols in the constituent
representations. Algorithms 1–2 convert back and
forth between the two formalisms, performing the
construction of Figure 3. Both algorithms run in
linear time with respect to the size of the sentence.

3.3 Continuous and Projective Trees

What about the more restricted class of projective
d-trees? Can we find an equivalence relation with
continuous c-trees? In this section, we give a pre-
cise answer to this question. It turns out that we
need an additional property, illustrated in Figure 4.

We say that ≺h has the nesting property iff
closer words in the same direction are always at-
tached first, i.e., iff h < mi < mj or h > mi >
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Algorithm 2 Conversion from d-tree to c-tree

Input: head-ordered d-tree D.
Output: c-tree C.
1: Nodes := GETPOSTORDERTRAVERSAL(D).
2: for h ∈ Nodes do
3: Create v := 〈ph, h, {h}〉 and set ψ(h) := v.
4: Sort Mh(D), yielding M̄1

h ≺h M̄
2
h ≺h . . . ≺h M̄

J
h .

5: for j = 1, . . . , J do
6: Let Z be the label in {〈h,m,Z〉 | m ∈ M̄ j

h}.
7: Obtain c-nodes ψ(h) = 〈X,h, I〉 and ψ(m) =

〈Ym,m,Jm〉 for all m ∈ M̄ j
h.

8: Add c-node v := 〈Z, h, I ∪⋃
m∈M̄j

h
Jm〉 to C.

9: Set ψ(h) and {ψ(m) |m ∈ M̄ j
h} as children of v.

10: Set ψ(h) := v.
11: end for
12: end for

mj implies that either mi ≡h mj or mi ≺h mj .
A weakly-ordered d-tree which is projective and
whose orders ≺h have the nesting property for ev-
ery h is called a nested-weakly ordered projec-
tive d-tree. We then have the following result.
Proposition 3. Continuous unaryless c-trees and
nested-weakly ordered projective d-trees are iso-
morphic.

Proof. See the supplementary material.

Together, Propositions 1–3 have as corollary
that nested-strictly ordered projective d-trees are
in a one-to-one correspondence with binary con-
tinuous c-trees. The intuition is simple: if ≺h has
the nesting property, then, at each point in time, all
one needs to decide about the next event is whether
to attach the closest available modifier on the left
or on the right. This corresponds to choosing
between left-branching or right-branching in a c-
tree. While this is potentially interesting for most
continuous c-parsers, which work with binarized
c-trees when running the CKY algorithm, our c-
parsers (to be described in §4) do not require any
binarization since they work with weakly-ordered
d-trees, using Proposition 2.

4 Reduction-Based Constituent Parsers

We now invoke the equivalence results established
in §3 to build c-parsers when only a trainable d-
parser is available. Given a c-treebank provided as
input, our procedure is outlined as follows:

1. Convert the c-treebank to dependencies (Algo-
rithm 1).

2. Train a labeled d-parser on this treebank.

3. For each test sentence, run the labeled d-parser
and convert the predicted d-tree into a c-tree
without unary nodes (Algorithm 2).

4. Do post-processing to recover unaries.

The next subsections describe each of these steps
in detail. Along the way, we illustrate with exper-
iments using the English Penn Treebank (Marcus
et al., 1993), which we lexicalized by applying the
head rules of Collins (1999).4

4.1 Dependency Encoding

The first step is to convert the c-treebank to head-
ordered dependencies, which we do using Algo-
rithm 1. If the original treebank has discontinu-
ous c-trees, we end up with non-projective d-trees
or with violations of the nested property, as estab-
lished in Proposition 3. We handle this gracefully
by training a non-projective d-parser in the sub-
sequent stage (see §4.2). Note also that this con-
version drops the unary nodes (a consequence of
Proposition 2). These nodes will be recovered in
the last stage, as described in §4.4.

Since in this paper we are assuming that only
an off-the-shelf d-parser is available, we need to
convert head-ordered d-trees to plain d-trees. We
do so by encoding the order information in the de-
pendency labels. We tried two different strategies.
The first one, direct encoding, just appends suf-
fixes #1, #2, etc., as in Figure 1. A disadvantage is
that the number of labels grows unbounded with
the treebank size, as we may encounter complex
substructures where the event sequences are long.
The second strategy is a delta-encoding scheme
where, rather than writing the absolute indices in
the dependency label, we write the differences be-
tween consecutive ones.5 We used this strategy
for the continuous treebanks only, whose d-trees
are guaranteed to satisfy the nested property.

For comparison, we also implemented a repli-
cation of the encoding proposed by Hall and Nivre
(2008), which we call H&N-encoding. This strat-
egy concatenates all the c-nodes’ symbols in the
modifier’s spine with the attachment position in
the head’s spine (e.g., in Figure 3, if the modi-
fier m2 has a spine with nodes X1, X2, X3, the
generated d-label would be X1|X2|X3#2; our direct
encoding scheme generates Z2#2 instead). Since
their strategy encodes the entire spines into com-

4We train on §02–21, use §22 for validation, and test on
§23. We predict automatic POS tags with TurboTagger (Mar-
tins et al., 2013), with 10-fold jackknifing on the training set.

5For example, if #1,#3,#4 and #2,#3,#3,#5 are
respectively the sequence of indices from the head to the left
and to the right, we encode these sequences as #1,#2,#1
and #2,#1,#0,#2 (using 3 distinct indices instead of 5).

129



plex arc labels, many such labels will be gener-
ated, leading to slower runtimes and poorer gener-
alization, as we will see.

For the training portion of the English PTB,
which has 27 non-terminal symbols, the direct en-
coding strategy yields 75 labels, while delta en-
coding yields 69 labels (2.6 indices per symbol).
By contrast, the H&N-encoding procedure yields
731 labels, more than 10 times as many. We later
show (in Tables 1–2) that delta-encoding leads to a
slightly higher c-parsing accuracy than direct en-
coding, and that both strategies are considerably
more accurate than H&N-encoding.

4.2 Training the Labeled Dependency Parser

The next step is to train a labeled d-parser on the
converted treebank. If we are doing continuous c-
parsing, we train a projective d-parser; otherwise
we train a non-projective one.

In our experiments, we found it advantageous to
perform labeled d-parsing in two stages, as done
by McDonald et al. (2006): first, train an unla-
beled d-parser; then, train a dependency labeler.6

Table 1 compares this approach against a one-
shot strategy, experimenting with various off-the-
shelf d-parsers: MaltParser (Nivre et al., 2007),
MSTParser (McDonald et al., 2005), ZPar (Zhang
and Nivre, 2011), and TurboParser (Martins et
al., 2013), all with the default settings. For Tur-
boParser, we used basic, standard and full models.

Our separate d-labeler receives as input a back-
bone d-structure and predicts a label for each arc.
For each head h, we predict the modifiers’ labels
using a simple sequence model, with features of
the form φ(h,m, `) and φ(h,m,m′, `, `′), where
m and m′ are two consecutive modifiers (possi-
bly on opposite sides of the head) and ` and `′ are
their labels. We use the same arc label features
φ(h,m, `) as TurboParser. For φ(h,m,m′, `, `′),
we use the POS triplet 〈ph, pm, pm′〉, plus unilex-
ical features where each of the three POS is re-
placed by the word form. Both features are con-
joined with the label pair ` and `′. Decoding un-
der this model can be done by running the Viterbi
algorithm independently for each head. The run-
time is almost negligible compared with the time
to parse: it took 2.1 seconds to process PTB §22,

6The reason why a two-stage approach is preferable is
that one-shot d-parsers, for efficiency reasons, use label fea-
tures parsimoniously. However, for our reduction approach,
d-labels are crucial and strongly interdependent, since they
jointly encode the c-structure.

Dependency Parser UAS LAS F1 # toks/s.
MaltParser 90.93 88.95 86.87 5,392
MSTParser 92.17 89.86 87.93 363
ZPar 92.93 91.28 89.50 1,022
TP-Basic 92.13 90.23 87.63 2,585
TP-Standard 93.55 91.58 90.41 1,658
TP-Full 93.70 91.70 90.53 959
TP-Full + Lab., H&N enc. 93.80 87.86 89.39 871
TP-Full + Lab, direct enc. 93.80 91.99 90.89 912
TP-Full + Lab., delta enc. 93.80 92.00 90.94 912

Table 1: Results on English PTB §22 achieved by various d-
parsers and encoding strategies. For dependencies, we report
unlabeled/labeled attachment scores (UAS/LAS), excluding
punctuation. For constituents, we show F1-scores (without
punctuation and root nodes), as provided by EVALB (Black
et al., 1992). We report total parsing speeds in tokens per sec-
ond (including time spent on pruning, decoding, and feature
evaluation), measured on a Intel Xeon processor @2.30GHz.

direct enc. delta enc.

# labels F1 # labels F1

Basque 26 85.04 17 85.17
French 61 79.93 56 80.05
German 66 83.44 59 83.39
Hebrew 62 83.26 43 83.29
Hungarian 24 86.54 15 86.67
Korean 44 79.79 16 79.97
Polish 47 92.39 34 92.64
Swedish 29 77.02 25 77.19

Table 2: Impact of direct and delta encodings on the dev sets
of the SPMRL14 shared task. Reported are the number of
labels and the F1-scores yielded by each encoding technique.

a fraction of about 5% of the total runtime.

4.3 Decoding into Unaryless Constituents

After training the labeled d-parser, we can run it
on the test data. Then, we need to convert the pre-
dicted d-tree into a c-tree without unaries.

To accomplish this step, we first need to recover,
for each head h, the weak order of its modifiers
Mh. We do this by looking at the predicted depen-
dency labels, extracting the event indices j, and
using them to build and sort the equivalent classes
{M̄ j

h}Jj=1. If two modifiers have the same index
j, we force them to have consistent labels (by al-
ways choosing the label of the modifier which is
the closest to the head). For continuous c-parsing,
we also decrease the index j of the modifier closer
to the head as much as necessary to make sure that
the nesting property holds. In PTB §22, these cor-
rections were necessary only for 0.6% of the to-
kens. Having done this, we use Algorithm 2 to
obtain a predicted c-tree without unary nodes.
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4.4 Recovery of Unary Nodes
The last stage is to recover the unary nodes. Given
a unaryless c-tree as input, we predict unaries by
running independent classifiers at each node in the
tree (a simple unstructured task). Each class is
either NULL (in which case no unary node is ap-
pended to the current node) or a concatenation of
unary node labels (e.g., S->ADJP for a node JJ).
We obtained 64 classes by processing the training
sections of the PTB, the fraction of unary nodes
being about 11% of the total number of nodes. To
reduce complexity, for each node symbol we only
consider classes that have been observed with that
symbol in the training data. In PTB §22, this yields
an average of 9.9 candidates per node occurrence.

The classifiers are trained on the original c-
treebank, stripping off unary nodes and trained to
recover those nodes. We used the following fea-
tures (conjoined with the class and with a flag in-
dicating if the node is a pre-terminal):

• The production rules above and beneath the
node (e.g., S->NP VP and NP->DT NN);

• The node’s label, alone and conjoined with the
parent’s label or the left/right sibling’s label;

• The leftmost and rightmost word/lemma/POS
tag/morpho-syntactic tags in the node’s yield;

• If the left/right node is a pre-terminal, the
word/lemma/morpho-syntactic tags beneath.

This is a relatively easy task: when gold unaryless
c-trees are provided as input, we obtain an EVALB
F1-score of 99.43%. This large figure is due to the
small amount of unary nodes, making this mod-
ule have less impact on the final parser than the
d-parser. Being a lightweight unstructured task,
this step took only 0.7 seconds to run on PTB §22,
a tiny fraction (less than 2%) of the total runtime.

Table 1 shows the accuracies obtained with the
d-parser followed by the unary predictor. Since
two-stage TP-Full with delta-encoding is the best
strategy, we use this configuration in the sequel.
To further explore the impact of delta encoding,
we report in Table 2 the scores obtained by direct
and delta encodings on eight other treebanks (see
§5.2 for details on these datasets). With the ex-
ception of German, in all cases the delta encoding
yielded better EVALB F1-scores with fewer labels.

5 Experiments

To evaluate the performance of our reduction-
based parsers, we conduct experiments in a variety

Parser LR LP F1 #Toks/s.
Charniak (2000) 89.5 89.9 89.5 –
Klein and Manning (2003) 85.3 86.5 85.9 143
Petrov and Klein (2007) 90.0 90.3 90.1 169
Carreras et al. (2008) 90.7 91.4 91.1 –
Zhu et al. (2013) 90.3 90.6 90.4 1,290
Stanford Shift-Reduce (2014) 89.1 89.1 89.1 655
Hall et al. (2014) 88.4 88.8 88.6 12
This work 89.9 90.4 90.2 957
Charniak and Johnson (2005)∗ 91.2 91.8 91.5 84
Socher et al. (2013)∗ 89.1 89.7 89.4 70
Zhu et al. (2013)∗ 91.1 91.5 91.3 –

Table 3: Results on the English PTB §23. All systems report-
ing runtimes were run on the same machine. Marked as ∗ are
reranking and semi-supervised c-parsers.

of treebanks, both continuous and discontinuous.

5.1 Results on the English PTB

Table 3 shows the accuracies and speeds achieved
by our system on the English PTB §23, in compar-
ison to state-of-the-art c-parsers. We can see that
our simple reduction-based c-parser surpasses the
three Stanford parsers (Klein and Manning, 2003;
Socher et al., 2013, and Stanford Shift-Reduce),
and is on par with the Berkeley parser (Petrov and
Klein, 2007), while being more than 5 times faster.

The best supervised competitor is the recent
shift-reduce parser of Zhu et al. (2013), which
achieves similar, but slightly better, accuracy and
speed. Our technique has the advantage of being
flexible: since the time for d-parsing is the domi-
nating factor (see §4.4), plugging a faster d-parser
automatically yields a faster c-parser. While
reranking and semi-supervised systems achieve
higher accuracies, this aspect is orthogonal, since
the same techniques can be applied to our parser.

5.2 Results on the SPMRL Datasets

We experimented with datasets for eight lan-
guages, from the SPMRL14 shared task (Seddah
et al., 2014). We used the official training, de-
velopment and test sets with the provided pre-
dicted POS tags. For French and German, we
used the lexicalization rules detailed in Dybro-
Johansen (2004) and Rehbein (2009), respectively.
For Basque, Hungarian and Korean, we always
took the rightmost modifier as head-child node.
For Hebrew and Polish we used the leftmost mod-
ifier instead. For Swedish we induced head rules
from the provided dependency treebank, as de-
scribed in Versley (2014b). These choices were
based on dev-set experiments.

Table 4 shows the results. For all languages ex-
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cept French, our system outperforms the Berke-
ley parser (Petrov and Klein, 2007), with or with-
out prescribed POS tags. Our average F1-scores
are superior to the best non-reranking system par-
ticipating in the shared task (Crabbé and Seddah,
2014) and to the c-parser of Hall et al. (2014),
achieving the best results for 4 out of 8 languages.

5.3 Results on the Discontinuous Treebanks

Finally, we experimented on two widely-used dis-
continuous German treebanks: TIGER (Brants et
al., 2002) and NEGRA (Skut et al., 1997). For
the former, we used two different splits: TIGER-
SPMRL, provided in the SPMRL14 shared task;
and TIGER-H&N, used by Hall and Nivre (2008).
For NEGRA, we used the standard splits. In these
experiments, we skipped the unary recovery stage,
since very few unary nodes exist in the data.7 We
ran TurboTagger to predict POS tags for TIGER-
H&N and NEGRA, while in TIGER-SPMRL we used
the predicted POS tags provided in the shared task.
All treebanks were lexicalized using the head-rule
sets of Rehbein (2009). For comparison to related
work, sentence length cut-offs of 30, 40 and 70
were applied during the evaluation.

Table 5 shows the results. We observe that
our approach outperforms all the competitors con-
siderably, achieving state-of-the-art accuracies for
both datasets. The best competitor, van Cranen-
burgh and Bod (2013), is more than 3 points be-
hind, both in TIGER-H&N and in NEGRA. Our
reduction-based parsers are also much faster: van
Cranenburgh and Bod (2013) report 3 hours to
parse NEGRA with L ≤ 40. Our system parses
all NEGRA sentences (regardless of length) in 27.1
seconds in a single core, which corresponds to a
rate of 618 tokens per second. This approaches the
speed of the easy-first system of Versley (2014a),
who reports runtimes in the range 670–920 tokens
per second, but is much less accurate.

6 Related Work

Conversions between constituents and dependen-
cies have been considered by De Marneffe et al.
(2006) in one direction, and by Collins et al.
(1999) and Xia and Palmer (2001) in the other, to-
ward multi-representational treebanks (Xia et al.,
2008). This prior work aimed at linguistically
sound conversions, involving grammar-specific

7NEGRA has no unaries; for the TIGER-SPMRL and H&N
dev-sets, the fraction of unaries is 1.45% and 1.01%.

TIGER-SPMRL L ≤ 70 all
V14b, gold 76.46 / 41.05 76.11 / 40.94
Ours, gold 80.98 / 43.44 80.62 / 43.32
V14b, pred 73.90 / 37.00 – / –
Ours, pred 77.72 / 38.75 77.32 / 38.64

TIGER-H&N L ≤ 40 all
HN08, gold 79.93 / 37.78 – / –
V14a, gold 74.23 / 37.32 – / –
Ours, gold 85.53 / 51.21 84.22 / 49.63

HN08, pred 75.33 / 32.63 – / –
CB13, pred 78.8– / 40.8– – / –
Ours, pred 82.57 / 45.93 81.12 / 44.48

NEGRA L ≤ 30 L ≤ 40 all
M12, gold 74.5– / – – / – – / –
C12, gold – / – 72.33 / 33.16 71.08 / 32.10

KM13, gold 75.75 / – – / – – / –
CB13, gold – / – 76.8– / 40.5– – / –
Ours, gold 82.56 / 52.13 81.08 / 48.04 80.52 / 46.70
CB13, pred – / – 74.8– / 38.7– – / –
Ours, pred 79.63 / 48.43 77.93 / 44.83 76.95 / 43.50

Table 5: F1 / exact match scores on TIGER and NEGRA test
sets, with gold and predicted POS tags. These scores are com-
puted by the DISCO-DOP evaluator ignoring root nodes and,
for TIGER-H&N and NEGRA, punctuation tokens. The base-
lines are published results by Hall and Nivre 2008 (HN08),
Maier et al. 2012 (M12), van Cranenburgh 2012 (C12),
Kallmeyer and Maier 2013 (KM13), van Cranenburgh and
Bod 2013 (CB13), and Versley 2014a, 2014b (V14a, V14b).

transformation rules to handle the kind of ambigu-
ities expressed in Figure 2. Our work differs in that
we are not concerned about the linguistic plausi-
bility of our conversions, but only with the formal
aspects that underlie the two representations.

The work most related to ours is Hall and Nivre
(2008), who also convert dependencies to con-
stituents to prototype a c-parser for German. Their
encoding strategy is compared to ours in §4.1: they
encode the entire spines into the dependency la-
bels, which become rather complex and numer-
ous. A similar strategy has been used by Vers-
ley (2014a) for discontinuous c-parsing. Both are
largely outperformed by our system, as shown in
§5.3. The crucial difference is that we encode only
the top node’s label and its position in the spine—
besides being a much lighter representation, ours
has an interpretation as a weak ordering, leading to
the isomorphisms expressed in Propositions 1–3.

Joint constituent and dependency parsing have
been tackled by Carreras et al. (2008) and Rush
et al. (2010), but the resulting parsers, while ac-
curate, are more expensive than a single c-parser.
Very recently, Kong et al. (2015) proposed a much
cheaper pipeline in which d-parsing is performed
first, followed by a c-parser constrained to be con-
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Parser Basque French German Hebrew Hungar. Korean Polish Swedish Avg.
Berkeley 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.19 78.45
Berkeley Tagged 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 81.17
Hall et al. (2014) 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.72
Crabbé and Seddah (2014) 85.35 79.68 77.15 86.19 87.51 79.35 91.60 82.72 83.69
This work 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 84.22
Björkelund et al. (2014) 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.72

Table 4: F1-scores on eight treebanks of the SPMRL14 shared task, computed with the provided EVALB SPMRL tool, which
takes into account all tokens except root nodes. Berkeley Tagged is a version of Petrov and Klein (2007) using the predicted POS
tags provided by the organizers. Crabbé and Seddah (2014) is the best non-reranking system in the shared task, and Björkelund
et al. (2014) the ensemble and reranking-based system which won the official task. We report their published scores.

sistent with the predicted d-structure. Our work
differs in which we do not need to run a c-parser
in the second stage—instead, the d-parser already
stores constituent information in the arc labels,
and the only necessary post-processing is to re-
cover unary nodes. Another advantage of our
method is that it can be readily used for discon-
tinuous parsing, while their constrained CKY al-
gorithm can only produce continuous parses.

7 Conclusion

We proposed a reduction technique that allows
to implement a c-parser when only a d-parser is
given. The technique is applicable to any d-parser,
regardless of its nature or kind. This reduction was
accomplished by endowing d-trees with a weak or-
der relation, and showing that the resulting class of
head-ordered d-trees is isomorphic to constituent
trees. We showed empirically that the our re-
duction leads to highly-competitive c-parsers for
English and for eight morphologically rich lan-
guages; and that it outperforms the current state
of the art in discontinuous parsing of German.
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A Supplementary Material

A.1 Proof of Proposition 1
We will show that, given an arbitrary strictly-ordered d-tree D, we can perform an invertible transforma-
tion to turn it into a binary c-tree C; and vice-versa. Let D be given. We visit each node h ∈ {1, . . . , L}
and split it into K + 1 nodes, where K = |Mh|, organized as a linked list, as Figure 3 illustrates (this
will become the spine of h in the c-tree). For each modifier mk ∈ Mh with m1 ≺h . . . ≺h mK , move
the tail of the arc 〈h,mk, Zk〉 to the (K + 1− k)th node of the linked list and assign the label Zk to this
node, letting h be its lexical head. Since the incoming and outgoing arcs of the linked list component
are the same as in the original node h, the tree structure is preserved. After doing this for every h, add
the leaves and propagate the yields bottom up. It is straightforward to show that this procedure yields a
valid binary c-tree. Since there is no loss of information (the orders ≺h are implied by the order of the
nodes in each spine), this construction can be inverted to recover the original d-tree. Conversely, if we
start with a binary c-tree, traverse the spine of each h, and attach the modifiers m1 ≺h . . . ≺h mK in
order, we get a strictly ordered d-tree (also an invertible procedure).

A.2 Proof of Proposition 3
We need to show that (i) Algorithm 1, when applied to a continuous c-tree C, retrieves a head ordered
d-tree D which is projective and has the nesting property, (ii) vice-versa for Algorithm 2. To see (i), note
that the projectiveness of D is ensured by the well-known result of Gaifman (1965) about the projection
of continuous trees. To show that it satisfies the nesting property, note that nodes higher in the spine of a
word h are always attached by modifiers farther apart (otherwise edges in C would cross, which cannot
happen for a continuous C). To prove (ii), we use induction. We need to show that every created c-node
in Algorithm 2 has a contiguous span as yield. The base case (line 3) is trivial. Therefore, it suffices to
show that in line 8, assuming the yields of (the current) ψ(h) and each ψ(m) are contiguous spans, the
union of these yields is also contiguous. Consider the node v when these children have been appended
(line 9), and choose m ∈ M̄ j

h arbitrarily. We only need to show that for any d between h and m, d
belongs to the yield of v. Since D is projective and there is a d-arc between h and m, we have that d
must descend from h. Furthermore, since projective trees cannot have crossing edges, we have that h has
a unique child a, also between h and m, which is an ancestor of d (or d itself). Since a is between h and
m, from the nesting property, we must have 〈h,m, `〉 6≺h 〈h, a, `′〉 Therefore, since we are processing
the modifiers in order, we have that ψ(a) is already a descendent of v after line 9, which implies that the
yield of ψ(a) (which must include d, since d descends from a) must be contained in the yield of v.
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APPENDIX A

Resumen

El objetivo final del procesamiento del lenguaje natural (PLN) es transformar texto bruto
escrito en lenguaje natural en una representación que una máquina sea capaz de manejar.
De esta forma, información textual sin tratar puede ser fácilmente utilizada por un
ordenador para acometer tareas más complejas como traducción automática, extracción
de información o búsqueda de respuestas.

El análisis sintáctico es uno de los procesamientos del PLN más utilizados y
extendidos. Éste consiste en determinar la estructura gramatical de una oración en
lenguaje natural: dada una oración de entrada, un analizador creará su representación
sintáctica. Esta estructura subyacente puede ser representada en diferentes formatos
dependiendo de la teoría sintáctica que guíe al analizador.

Hay dos formalismos sintácticos ampliamente extendidos para este proposito:
representaciones de constituyentes [2, 7] y de dependencias [44]. En el primer caso,
las oraciones son analizadas sintácticamente mediante su descomposición en partes con
significado, denominadas constituyentes, creando relaciones entre éstas y las palabras
para, finalmente, construir un árbol de constituyentes, como el descrito en la Figura A.1.
Por otro lado, en el análisis de dependencias, la estructura sintáctica de una oración es
representada mediante un grafo de dependencias. Éste está compuesto por un conjunto de
relaciones binarias denominadas dependencias que unen pares de palabras de una oración
para describir una relación sintáctica entre ellas, donde una actúa como padre y la otra
como dependiente. Decimos que es un árbol de dependencias si cada una de las palabras
de la oración tiene un único padre, la estructura es acíclica y únicamente tiene una raíz,
como el presentado en la Figura A.2.

En las dos últimas decadas, el análisis sintáctico de dependencias ha llegado a ser
muy popular en la comunidad del PLN, en detrimento de su rival, el análisis sintáctico
de constituyentes. Esto se ha debido principalmente a que el primero tiene algunas
ventajas irrefutables sobre el segundo. La falta de nodos intermedios en los grafos de
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Figura A.1: Árbol de constituyentes para una oración en inglés.
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Figura A.2: Árbol de dependencias para una oración en inglés.

dependencias les conceden la sencillez necesaria para representar fenómenos lingüísticos
más complejos, tales como las discontinuidades causadas por el orden libre de las
palabras, y ha permitido el desarrollo de analizadores sintácticos más eficientes. Como
consecuencia, este tipo de analizadores han sido utilizados en una gran variedad de
aplicaciones de forma exitosa que van desde la traducción automática [12, 24, 41, 49] y
extracción de relaciones [11, 14, 23, 33] hasta la búsqueda de respuestas [8, 10] y minería
de opiniones [22, 46].

En contraste con los analizadores sintácticos de dependencias guiados por una
gramática, un nuevo paradigma centrado en los datos ha emergido en los últimos
veinte años. La representación explícita de conocimiento mediante el uso de reglas
gramaticales [27, 43] ha sido reemplazada por el paradigma guiado por los datos, apoyado
por el emergente campo del aprendizaje automático y la disponibilidad de una gran
cantidad de datos. La creciente disponibilidad de recursos manualmente anotados, tal
como el Penn Treebank [28] o corpora proporcionado por la CoNLL-X [5] Shared Task y
la CoNLL-XI [37] Shared Task, han hecho posible la aplicación de técnicas de aprendizaje
automático, capaces de extraer de forma automática modelos estadísticos a partir de
los datos sin necesidad de una gramática explícita, para el desarrollo de analizadores
sintácticos de dependencias que producen análisis precisos de forma muy eficiente.

Los analizadores sintácticos de dependencias guiados por los datos han sido un campo
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muy fructífero dentro del PLN, resultando en algunos de los sistemas más precisos y
eficientes como aquellos desarrollados por Nivre et al. [38], McDonald et al. [32], Titov
y Henderson [45], Martins et al. [29], Huang y Sagae [20], Koo y Collins [26], Zhang
y Nivre [51], Bohnet y Nivre [3] o Goldberg y Nivre [15]. Prácticamente todos estos
sistemas pueden ser clasificados en dos familias, comúnmente denominadas analizadores
basados en grafos y basados en transiciones [31, 50].

Los analizadores basados en grafos aprenden un modelo global para puntuar posibles
grafos de dependencias para una oración dada y, a continuación, el proceso de análisis
sintáctico consiste en buscar el grafo con mayor puntuación. Las propuestas de McDonald
et al. [32] y Martins et al. [29] son dos analizadores basados en grafos ampliamente
conocidos. El principal inconveniente de esta técnica es que el proceso de análisis
sintáctico se lleva a cabo bajo una complejidad temporal, en el mejor de los casos,
cuadrática.

Por otro lado, los analizadores basados en transiciones han demostrado ser más
rápidos y eficientes, ya que muchos de ellos son capaces de realizar el análisis de una
oración con una complejidad temporal lineal; aún siendo capaces de ofrecer precisiones
a la altura del estado del arte. Dada una oración, un analizador de esta naturaleza
construye incrementalmente un grafo de dependencias de izquierda a derecha mediante
la elección voraz de la transición permitida con mayor puntuación en cada estado del
proceso. De este modo, la oración de entrada es analizada sintácticamente por una
secuencia de transiciones compuesta por las acciones con mayor puntuación. El conjunto
de transiciones que el analizador puede utilizar son individualmente puntuadas por un
modelo estadístico previamente entrenado y que se denomina oráculo. Además, existe
una variante de analizadores basados en transiciones que incluye la técnica del beam
search para la selección de la mejor secuencia de transiciones [50], en lugar de hacerlo de
forma voraz. De hecho, uno de los sistemas basados en transiciones que ostenta el estado
del arte es el analizador con beam search de Zhang y Nivre [51].

Desafortunadamente, la naturaleza voraz que les concede su eficiencia también se
convierte en su principal debilidad. McDonald y Nivre [30] muestran que la principal
razón de perdida de precisión en los analizadores basados en transiciones es la
propagación de errores: una transición seleccionada de forma errónea podría posicionar el
analizador en un estado incorrecto, causando a continuación más errores en la secuencia
de transiciones. Como la oración es analizada en un proceso secuencial, un error en
un estado temprano del proceso podría llevar a cometer más errores en futuras etapas.
En particular, una de las fuentes de propagación de errores es el cumplimiento de la
restricción de padre único necesaria para formar un árbol de dependencias. Por ejemplo,
si un sistema basado en transiciones está analizando la oración de la Figura A.2 y
erróneamente aplica la transición que crea un arco de a3 a tree5 en lugar de la correcta
dependencia de tree5 a a3; no fallaría únicamente en la creación de esta dependencia
sino también en aquella que va de is2 a tree5, ya que estaría en un estado donde
la restricción de padre único no permitiría la creación de dos arcos entrantes sobre
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el nodo tree5. A mayores, oraciones y arcos de gran longitud se ven especialmente
afectados por la propagación de errores, ya que es necesario utilizar una secuencia de
transiciones más larga para su análisis. En esta tesis, centramos todos nuestros esfuerzos
en conseguir que los analizadores sintácticos basados en transiciones sean más precisos
mediante la reducción de la propagación de errores, pero sin penalizar su ventajosa
eficiencia. Además, algunas de las mejoras aplicadas con éxito en los sistemas basados
en transiciones también podrían ser utilizadas en cualquier otro tipo de analizadores de
dependencias.

A pesar del hecho de que el análisis sintáctico de dependencias ha estado en el foco de
atención en los últimos veinte años, las representaciones de constituyentes han generado
recientemente un gran interés entre los investigadores de PLN. Esto ha sido facilitado
por el hecho de que algunas aplicaciones, como el análisis de sentimientos y la minería
de opiniones [1, 13, 21, 48], requieren de formalismos sintácticos más informativos
que las representaciones de dependencias. Sin embargo, el principal problema es que
la mayoría de los analizadores de constituyentes disponibles son significativamente
lentos [6, 25, 39], puesto que necesitan lidiar con una pesada constante gramatical. Por lo
tanto, la comunidad de PLN demanda un analizador de constituyentes que sea tan eficiente
como sus homónimos de dependencias. Para satisfacer esta necesidad, proponemos un
nuevo enfoque que mezcla lo mejor de ambos mundos: construir una estructura de
constituyentes más informativa mediante un eficiente analizador de dependencias.

Por lo tanto, esta tesis pretende hacer aportaciones tanto al campo del análisis
sintáctico de constituyentes como al de dependencias. Nuestra intención es mejorar el
rendimiento de los analizadores de dependencias (concretamente, los sistemas basados
en transiciones) y utilizarlos para llevar a cabo un análisis sintáctico de constituyentes de
forma eficiente.

A.1 | Preliminares

A continuación, introducimos algunas definiciones y notaciones básicas sobre
analizadores de dependencias basados en transiciones, que nos van a servir como base
para presentar todas nuestras contribuciones.

A.1.1 | Análisis sintáctico de dependencias

Un grafo de dependencias es un grafo dirigido y etiquetado que representa la estructura
sintáctica de una oración dada. Más formalmente, puede ser definido como:

Definición 1 Sea w = w1 . . . wn una cadena de entrada. Un grafo de dependencias para
w1 . . . wn es un grafo dirigido y etiquetado G = (Vw, A), donde Vw = {0, . . . , n} es el
conjunto de nodos, y A ⊆ Vw × L× Vw es el conjunto de arcos etiquetados y dirigidos.
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�

Además de cada palabra de la oración con índice i tal que 1 ≤ i ≤ n, el conjunto Vw
incluye un nodo especial con índice 0 denominado ROOT, el cual no se corresponde con
ninguna palabra de la oración y siempre será la raíz del grafo de dependencias.

Cada arco en A codifica una relación de dependencia entre dos palabras.
Denominamos una arista (wi, l, wj) en un grafo de dependencias G a un enlace de

dependencia de wi a wj con etiqueta l, reprensentado como wi
l→ wj . Decimos que

wi es el padre de wj e, inversamente, que wj es el dependiente de wi. Las etiquetas
sobre los enlaces de dependencia son habitualmente utilizados para representar funciones
sintácticas, tal como SBJ para el sujeto en la dependencia is2 → This1 de la Figura A.2.

Por conveniencia, escribimos wi → wj ∈ G si el arco (wi,wj) existe (sin importar su
etiqueta) y wi →∗ wj ∈ G si hay un (posiblemente vacío) camino dirigido de wi a wj .

La mayoría de los formalismos sintácticos basados en dependencias están restringidos
a grafos acíclicos donde cada nodo tiene como máximo un padre. Tales grafos de
dependencias se denominan bosques de dependencias.

Definición 2 Un grafo de dependencias G se dice que es un bosque de dependencias si
cumple las siguientes restricciones:

1. Restricción de padre único: si wi → wj , entonces no existe ningún wk 6= wi tal que
wk → wj .

2. Restricción de aciclicidad: si wi →∗ wj , entonces no existe ningún arco wj → wi.

�

Los nodos que no tienen padre en un bosque de dependencias se denominan
raíces. Además de las dos restricciones previamente descritas, algunos formalismos de
dependencias añaden la condición adicional de que el bosque únicamente debe tener una
raíz (o, equivalentemente, que todos los nodos del grafo estén conectados). Un bosque
con estas características se conoce como un árbol de dependencias.

Un analizador de dependencias es un sistema encargado de analizar una oración dada
produciendo un grafo de dependencias. En esta tesis, se ha trabajado con analizadores que
construyen árboles de dependencias. Esto significa que cumplen con las restricciones de
padre único y de aciclicidad, así como que todas las raíces del grafo sean enlazadas como
dependientes del nodo artificial ROOT.

Finalmente, muchos analizadores están restringidos a trabajar con estructuras de
dependencias proyectivas para preservar su eficiencia computacional. Se trata de grafos de
dependencias donde el conjunto de nodos alcanzables al atravesar cero o más arcos desde
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cualquier nodo k se corresponde con una subcadena continua de la entrada, esto es, un
intervalo {x ∈ Vw | i ≤ x ≤ j}. Para identificar si un grafo de dependencias es proyectivo
se puede utilizar su representación gráfica, como la de la Figura A.2, donde la ausencia de
arcos que se cruzan confirma la proyectividad de la estructura. Para analizar fenómenos
sintácticos más complejos, es necesario utilizar grafos de dependencias no proyectivos
(con arcos cruzados), los cuales permiten la representación de discontinuidades causadas
por el orden libre de las palabras.

A.1.2 | Sistema de transiciones

El entorno de trabajo propuesto por Nivre [36] ofrece los componentes necesarios para
desarrollar un analizador basado en transiciones. Éste es un analizador de dependencias
determinista definido por un sistema de transiciones no determinista. Un sistema de
transiciones especifica el conjunto de operaciones elementales que son aplicadas de forma
determinista por un oráculo en cada estado del proceso de análisis. Más formalmente, se
define como:

Definición 3 Un sistema de transiciones para análisis de dependencias es una tupla
S = (C, T, cs, Ct), donde

1. C es un conjunto de posibles configuraciones,

2. T es un conjunto finito de transiciones, que son funciones parciales t : C → C,

3. cs es una función de inicialización que representa cada cadena de entrada w como
una única configuración inicial cs(w), y

4. Ct ⊆ C es un conjunto de configuraciones terminales.

�

Definición 4 Un oráculo para un sistema de transiciones es una función o : C → T .

�

Una oración de entrada w puede ser analizada sintácticamente utilizando un sistema
de transiciones S = (C, T, cs, Ct) y un oráculo o, empezando en la configuración inicial
cs(w), llamando a la función oráculo en la configuración actual c, y desplazandose a la
siguiente configuración mediante el uso de la transición seleccionada por el oráculo. Este
proceso es repetido hasta que se alcanza una configuración terminal. Cada secuencia de
configuraciones que el analizador puede recorrer desde la configuración inicial hasta la
terminal para una entrada w se denomina una secuencia de transiciones.
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Transition Stack (σ) Buffer (β) Added Arc

[ROOT0] [This1, ... , tree5]
SHIFT [ROOT0, This1] [is2, ... , tree5]
LASBJ [ROOT0] [is2, ... , tree5] (2, SBJ, 1)
RAROOT [ROOT0, is2] [a3, ... , tree5] (0, ROOT, 2)
SHIFT [ROOT0, is2, a3] [dependency4, tree5]
SHIFT [ROOT0, is2, a3, dependency4] [tree5]
LANMOD [ROOT0, is2, a3] [tree5] (5, NMOD, 4)
LADET [ROOT0, is2] [tree5] (5, DET, 3)
RAPRED [ROOT0, is2, tree5] [ ] (2, PRED, 5)

Figura A.3: Secuencia de transiciones necesaria para analizar sintácticamente la oración
de la Figura A.2 utilizando el algoritmo Arc-eager (LA=LEFT-ARC, RA=RIGHT-ARC).

En la práctica, el oráculo se implementa mediante un modelo estadístico previamente
entrenado en un banco de árboles [38] y su cometido es el de seleccionar la transición
con mayor puntuación del conjunto T para ser aplicada en cada configuración. Un banco
de árboles está formado por una gran cantidad de oraciones manualmente anotadas con
sus respectivos grafos de dependencias. En particular, en esta tesis hemos trabajado con
el English Penn Treebank [28] y bancos de árboles disponibles en la CoNLL-X Shared
Task [5] y la CoNLL-XI Shared Task [37] .

A.1.3 | Analizador sintáctico Arc-eager

El analizador de dependencias Arc-eager desarrollado por Nivre [35] es uno de los
sistemas basados en transiciones más conocidos y utilizados. Concretamente, el sistema
de transiciones del Arc-eager (C, T, cs, Ct) se define como:

1. C es el conjunto de todas las configuraciones de la forma c = 〈σ, β,A〉, donde σ y
β son listas disjuntas de nodos de Vw (para alguna entrada w), y A es un conjunto
de arcos de dependencias sobre Vw. La lista β, denominada buffer, se utiliza para
almacenar los nodos correspondientes a las palabras entrantes que todavía no han
sido leídas. La lista σ, denominada pila, contiene los nodos de las palabras que
ya han sido leídas, pero que todavía tienen arcos pendientes de ser creados. Por
conveniencia, se usará la notación σ|wi para denotar que la palabra wi está en la
cima de la pila σ, y la notación wj|β para indicar que la palabra wj se encuentra en
la primera posición del buffer β. El conjunto A de arcos de dependencias contiene
la parte del análisis construido hasta el momento.

2. La configuración inicial es cs(w1 . . . wn) = 〈[], [w1 . . . wn], ∅〉, donde el buffer
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inicialmente contiene toda la cadena de entrada y la pila está vacía (o
cs(w1 . . . wn) = 〈[ROOT0], [w1 . . . wn], ∅〉, si la pila contiene el nodo artificial
ROOT).

3. El conjunto de configuraciones terminales es Ct = {〈σ, [], A〉 ∈ C}, donde las
configuraciones finales son aquellas con el buffer vacío, sin importar el contenido
de la pila.

4. El conjunto T incluye las siguientes transiciones:

• SHIFT : 〈σ,wi|β,A〉 ⇒ 〈σ|wi, β, A〉

• REDUCE : 〈σ|wi, β, A〉 ⇒ 〈σ, β,A〉

• LEFT-ARCl :

〈σ|wi, wj|β,A〉 ⇒ 〈σ,wj|β,A∪{wj
l→ wi}〉

sólo si @wk | wk → wi ∈ A (padre único)

• RIGHT-ARCl :

〈σ|wi, wj |β,A〉 ⇒ 〈σ|wi|wj , β, A∪{wi
l→ wj}〉

sólo si @wk | wk → wj ∈ A (padre único)

La transición SHIFT se utiliza para leer palabras de la cadena de entrada, al desplazar
el siguiente nodo en el buffer a la cima de la pila. La transición LEFT-ARCl crea arcos
etiquetados con l hacia la izquierda desde el primer nodo del buffer hasta el nodo en la
cima de la pila, eliminando este último de la pila. Inversamente, la transición RIGHT-ARCl

construye una dependencia etiquetada con l hacia la derecha desde el nodo en la cima de la
pila hasta el primer nodo del buffer y desplaza este último a la pila. La transición REDUCE

se utiliza para eliminar los nodos de la cima de la pila que ya no van a estar implicados
en la creación de ningún arco. La Figura A.3 muestra la secuencia de transiciones que
necesita el sistema Arc-eager para producir el grafo de dependencias descrito en la
Figura A.2.

Nótese que el analizador Arc-eager es un algoritmo de complejidad temporal lineal,
ya que garantiza su terminación después de 2n transiciones (siendo n la longitud de la
cadena de entrada), y está restringido a árboles de dependencias proyectivos.

Otros sistemas basados en transiciones populares son: los analizadores Arc-standard
y Covington [9, 36], así como, los sistemas Planar y Two-planar [18].

A.2 | Contribuciones

A continuación resumimos las principales aportaciones de la presente tesis.
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ROOT0 This1 is2 a3 dependency4 tree5

ROOT

SBJ

PRED

NMOD

DET

Figura A.4: Grafo de dependencias no dirigido para la oración en inglés de la Figura A.2.

A.2.1 | Análisis sintáctico de dependencias no dirigido

En nuestro primer intento por reducir el impacto de la propagación de errores hemos
presentado un nuevo enfoque: el análisis sintáctico de dependencias no dirigido. Hasta
la fecha, todos los sistemas de dependencias existentes producían grafos dirigidos
(Figura A.2), donde las dependencias tienen una dirección desde la palabra padre a la
dependiente. Nosotros hemos desarrollado analizadores basados en transiciones capaces
de trabajar con grafos de dependencias no dirigidos como el representado en la Figura A.4.
Esto implica que la restricción de padre único no debe ser cumplida durante el proceso
de análisis sintáctico, ya que la noción de dirección de padre a dependiente se pierde en
los grafos no dirigidos. Como consecuencia, el analizador tiene mayor libertad, pudiendo
prevenir situaciones donde el cumplimiento de esta restricción daba lugar a la propagación
de errores.

Tras un proceso de análisis sintáctico no dirigido, es necesario realizar un paso
de pos-procesado con el fin de recuperar la dirección de las dependencias, generando
una estructura de dependencias válida. Por consiguiente, parte de la complejidad se
traslada del proceso de análisis a la etapa de pos-procesado. Esta simplificación tiene
como resultado que los analizadores no dirigidos cometan menos errores que la versión
original, logrando un incremento en la precisión en prácticamente todos los experimentos
realizados.

Concretamente, se han implementado las variantes no dirigidas de los analizadores
basados en transiciones Planar, Two-planar [18] y Covington [9, 36], y han sido testados
sobre el English Penn Treebank [28] y diferentes conjuntos de datos de la CoNLL-X
Shared Task [5]. Los resultados han confirmado la utilidad del análisis sintáctico de
dependencias no dirigido. Además, posteriores análisis de los resultados han corroborado
que, efectivamente, este nuevo enfoque reduce la influencia de la propagación de errores
en los sistemas basados en transiciones.

Esta técnica puede ser aplicada en cualquier analizador de dependencias, ofreciendo
más información sobre la misma en los Artículos 4.1 y 4.2. Por favor, nótese que el
Artículo 4.2 es una versión extendida del Artículo 4.1, el cual añade más contenido
incluyendo nuevos experimentos y un detallado análisis de errores.
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A.2.2 | Transiciones de buffer

Debido a que el análisis basado en transiciones se produce por medio de una secuencia
de transiciones, el impacto de la propagación de errores es directamente proporcional a
la longitud de dicha secuencia. En otras palabras, es más probable cometer errores (y,
por consiguiente, propagarlos) si el número de decisiones que el analizador tiene que
tomar es mayor. Ésta fue la intuición inicial que nos llevó a plantear esta estrategia:
intentar reducir el número de transiciones necesarias para analizar una oración dada. Para
conseguir esto, es necesario diseñar nuevas transiciones cuyo efecto reemplace a dos o
más transiciones originales. También sería deseable que estas nuevas transiciones fuesen
aplicadas en circunstancias fácilmente identificables por el analizador, sin sobrecargar la
labor del clasificador.

En particular, se han desarrollado cuatro diferentes transiciones para el popularmente
conocido analizador Arc-eager [35], detallado previamente en la Sección A.1.2,
denominadas transiciones de buffer. Éstas se definen como:

• LEFT-BUFFER-ARCl :

(σ,wi|wj|β,A)⇒ (σ,wj|β,A ∪ {wj
l→ wi}).

• RIGHT-BUFFER-ARCl :

(σ,wi|wj|β,A)⇒ (σ,wi|β,A ∪ {wi
l→ wj}).

• LEFT-NONPROJ-BUFFER-ARCl :

(σ|wi, wj|wk|β,A) ⇒ (σ,wj|wk|β,A ∪ {(wk
l→ wi)}). Precondiciones: i 6= 0 y

6 ∃wm, l
′ | (wm, l

′, wi) ∈ A (padre único)

• RIGHT-NONPROJ-BUFFER-ARCl :

(σ|wi, wj|wk|β,A)⇒ (σ|wi, wj|β,A ∪ {wi
l→ wk}).

Se trata de transiciones que crean un arco de dependencia sobre algún nodo del buffer
que no está disponible para las transiciones estándar. De esta forma, son capaces de
construir algunas dependencias sencillas a priori, antes de que los nodos implicados
sean desplazados a la pila, simplificando, en consecuencia, el trabajo del clasificador a
la hora de decidir qué transición estándar debe aplicar. A mayores, las transiciones LEFT-
NONPROJ-BUFFER-ARC y RIGHT-NONPROJ-BUFFER-ARC amplian la cobertura del
analizador Arc-eager. Ambas transiciones permiten la creación de un conjunto limitado
de arcos no proyectivos, ya que actúan sobre nodos no contiguos de la pila y del buffer.

También es necesario destacar que las transiciones LEFT-BUFFER-ARC y RIGHT-
BUFFER-ARC son equivalentes a aplicar la secuencia de transiciones estándar SHIFT

+ LEFT-ARC y SHIFT + RIGHT-ARC + REDUCE, respectivamente, dando lugar a
un acortamiento de la secuencia final de transiciones. Por otro lado, el efecto de
las transiciones LEFT-NONPROJ-BUFFER-ARC y RIGHT-NONPROJ-BUFFER-ARC no
puede ser representado mediante transiciones estándar debido a que añaden una
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funcionalidad no presente en el analizador Arc-eager, aunque también suponen una
reducción de la longitud de la secuencia de transiciones.

Experimentos realizados sobre distintos conjuntos de datos de la CoNLL-X Shared
Task [5] apoyan nuestra hipótesis y muestran que, mediante el uso de las transiciones de
buffer, la precisión del analizador Arc-eager se ve mejorada en prácticamente todos los
casos.

Esta técnica se detalla en el Artículo 4.3 y puede ser aplicada en analizadores
de dependencias basados en transiciones que presenten un buffer y una pila en sus
configuraciones.

A.2.3 | Análisis sintáctico en sentido inverso

Los sistemas basados en transiciones analizan una oración de izquierda a derecha. Debido
a la propagación de errores, la posibilidad de elegir una transición incorrecta tiende a ser
más alta a medida que nos acercamos al final de la oración. Como resultado, los arcos
situados en la parte derecha del grafo de dependencias sufren de una mayor pérdida de
precisión. Parece razonable pensar que aplicar un sistema basado en transiciones que
analice sintácticamente la oración en el sentido invertido, de derecha a izquierda, podría
ser más preciso en los arcos situados en la parte derecha del grafo. De hecho, ésta es la
idea principal que nos llevó a proponer el uso del análisis sintáctico en sentido inverso.
Concretamente, presentamos un sistema compuesto, donde un analizador de izquierda a
derecha se combina con su variante en sentido contrario (de derecha a izquierda).

Se ha demostrado que analizar una oración en orden inverso no mejora la precisión
global de los sistemas basados en transiciones [34]. Sin embargo, un análisis en sentido
inverso es capaz de producir correctamente algunos arcos del grafo de dependencias que
la versión original crea de forma errónea. En particular, hemos descubierto que, además
de mostrar un mejor rendimiento en los arcos ubicados a la derecha del grafo, el análisis
en orden inverso es capaz de conseguir mayor precisión en arcos de cierta longitud. Para
sacar ventaja de ello, hemos propuesto un sistema que combina de forma eficiente el grafo
resultante, tanto del analizador original, como del invertido, dando lugar a un nuevo grafo
de dependencias mejorado. Este sistema usa dos estrategias diferentes para acometer la
combinación: una estrategia basada en la posición y otra en la longitud de los arcos.

Hemos llevado a cabo diferentes experimentos para comprobar la efectividad de
este nuevo enfoque sobre diferentes conjuntos de datos (English Penn Treebank [28] y
corpora de la CoNLL-X Shared Task [5]) y distintos sistemas basados en transiciones.
Los resultados obtenidos muestran que la técnica propuesta produce mejoras de precisión
en todas las pruebas realizadas (véanse más detalles en el Artículo 4.4).
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A.2.4 | Analizador Arc-eager con restricción arbórea

La investigación recogida en el Artículo 4.5 concierne exclusivamente al analizador
basado en transiciones Arc-eager [35] descrito en la Sección A.1.2.

El algoritmo Arc-eager puede alcanzar una configuración terminal sin llegar a vaciar
la pila (exceptuando el nodo artificial ROOT). Debido a errores producidos durante el
proceso de análisis, parte de las palabras en la pila podrían no estar conectadas al grafo
de dependencias resultante (o, equivalentemente, podrían no tener padre). Esto da lugar
a un grafo fragmentado como resultado del proceso de análisis sintáctico. La salida
deseada sería un árbol de dependencias que cumpliese las restricciones de conectividad,
aciclicidad, padre único y que tuviese solamente una raíz. Para conseguir esto, la solución
estándar es convertir, al final del proceso de análisis, este grafo fragmentado en un árbol,
conectando todas las palabras sin padre en la pila al nodo artificial ROOT. Esta heurística
produce un árbol de dependencias bien formado, pero no reduce la perdida de precisión
causada por los errores cometidos durante el análisis.

Como alternativa, proponemos una modificación del algoritmo Arc-eager que
garantice que, después del análisis, el grafo resultante sea un árbol de dependencias.
Concretamente, se ha añadido la transición determinista UNSHIFT que, si el buffer está
vacío, desplaza palabras sin padre de la pila al buffer, para que puedan ser procesadas otra
vez. Además, se ha establecido una nueva configuración terminal que implica que, no sólo
el buffer esté vacío, sino que también ha de estarlo la pila (exceptuando el nodo artificial
ROOT). De este modo, al deshabilitar la transición SHIFT, forzamos el analizador Arc-
eager a crear arcos sobre estas palabras hasta alcanzar la nueva configuración terminal, ya
que sólo puede utilizar las transiciones LEFT-ARC, RIGHT-ARC y REDUCE (esta última
únicamente esta permitida sobre palabras que tengan un nodo padre y se utiliza de forma
determinista cuando el buffer está vacío). Como resultado, el algoritmo Arc-eager tiene la
oportunidad de rectificar algunos de los errores cometidos durante el proceso de análisis.

Evaluaciones empíricas efectuadas en todos los idiomas de la CoNLL-X Shared
Task [5] concluyeron que la restricción arbórea implementada en el analizador Arc-eager
mejora consistentemente la precisión obtenida por la heurística estándar que conecta todas
las palabras sin padre al nodo artificial ROOT.

A.2.5 | Oráculo dinámico no proyectivo

Con el fin de reducir el impacto de la propagación de errores en los analizadores basados
en transiciones, Goldberg y Nivre [15] han desarrollado una nueva estrategia denominada
oráculos dinámicos. Ésta consiste en dotar a los oráculos de los sistemas basados en
transiciones con la capacidad necesaria para tolerar errores producidos durante el proceso
de análisis, mitigando su impacto en el resultado final. Estos nuevos oráculos están
diseñados para sobreponerse a la presencia de errores cometidos en decisiones previas
e intentar perder el mínimo número de arcos en estados posteriores.
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A diferencia de los oráculos estándar, que son entrenados con la secuencia de
transiciones necesarias para analizar una oración dada, los oráculos dinámicos se entrenan
con secuencias no óptimas. Durante la etapa de entrenamiento, algunas transiciones son
seleccionadas de forma aleatoria simulando los errores cometidos durante el análisis. Esto
permite preparar a los oráculos dinámicos para situaciones que se van a encontrar en la
etapa de análisis.

Diferentes investigaciones han contribuido con oráculos dinámicos para analizadores
proyectivos basados en transiciones como el Arc-eager [15, 16, 17], así como, para
sistemas como el analizador de Attardi [19], que soporta un conjunto limitado de arcos
no proyectivos. No obstante, la falta de un oráculo dinámico general para arcos no
proyectivos, fue la motivación necesaria para aplicar esta estrategia sobre el algoritmo
de Covington [9, 36]. Se trata de un analizador que tiene cobertura completa sobre
estructuras no proyectivas y es considerado, en la práctica, uno de los sistemas basados
en transiciones más rápidos [47].

Concretamente, hemos implementado un oráculo dinámico eficiente específicamente
adaptado al analizador de Covington y hemos evaluado su rendimiento sobre los conjuntos
de datos disponibles en la CoNLL-X Shared Task [5] y en la CoNLL-XI [37] Shared Task.
Los resultados obtenidos prueban que los oráculos dinámicos son también beneficiosos
para el algoritmo de Covington, incrementando su precisión significativamente.

En el Artículo 4.6, presentamos los detalles de esta contribución.

A.2.6 | Reducción del análisis de constituyentes a dependencias

Como objetivo final de esta tesis, pretendemos utilizar el análisis de dependencias,
reconocido por su eficiencia, para producir representaciones de constituyentes. Para
abordar esta tarea, fue necesario desarrollar un formalismo intermedio que permitiese
reducir el análisis de constituyentes a dependencias. De este modo, cualquier analizador
de dependencias es suficiente para construir un analizador de constituyentes preciso y
eficiente.

Este enfoque está basado en la novedosa noción de árboles de dependencias ordenados
por las palabras padre. Después de determinar las palabras padre de cada constituyente,
la estructura de un árbol de constituyentes es codificada en un árbol de dependencias
como muestra la Figura A.5. Más en detalle, utilizamos las etiquetas de las dependencias
salientes de las palabras padre para almacenar cada nodo del árbol de constituyentes
(concretamente, el nodo principal del constituyente donde estas palabras actúan como
padre) junto con un índice que indica el orden de acoplamiento en la estructura. Por
ejemplo, en la Figura A.5 la palabra is actúa como padre en los constituyentes cuyos
nodos principales son VP y S, por lo tanto, ambos nodos son codificados con las etiquetas
VP#1 y S#2, respectivamente, donde los índices #1 y #2 indican que VP es acoplado
antes que S en el árbol de constituyentes. Si ignoramos el nodo unario NP (perdido durante
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Figura A.5: Un árbol de constituyentes (arriba) y su correspondiente codificación en un
árbol de dependencias (abajo). La palabra padre de cada constituyente y las etiquetas
morfológicas están marcadas en negrita y cursiva, respectivamente.

la conversión) y las etiquetas morfológicas, veremos como ambos árboles son isomorfos.
Esto hace posible una conversión de constituyentes a dependencias (y viceversa) necesaria
para producir árboles de constituyentes mediante analizadores de dependencias. Además,
los nodos unarios pueden ser eficientemente recuperados en una etapa posterior.

El sistema propuesto ha obtenido resultados a la par con el analizador de
constituyentes Berkeley Parser [39] sobre el English Penn Treebank [28], y con el mejor
sistema individual de la reciente SPMRL14 Shared Task [40]. También llevamos a cabo
experimentos sobre bancos de árboles discontinuos del alemán, concretamente el Tiger [4]
y el Negra [42], sobrepasando el actual estado del arte por un amplio margen.

Una detallada descripción de esta técnica puede encontrarse en el Artículo 4.7.

A.3 | Conclusiones

A lo largo de esta tesis hemos presentado novedosas técnicas para mejorar la precisión
de los analizadores sintácticos de dependencias basados en transiciones. En particular, las
propuestas abordan la principal causa de pérdida de precisión en este tipo de sistemas: la
propagación de errores.

Experimentos en diferentes idiomas del English Penn Treebank [28], CoNLL-
X Shared Task [5] y CoNLL-XI Shared Task [37] han demostrado que todas las
contribuciones son beneficiosas para el rendimiento de los sistemas basados en
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transiciones. En todos los casos, conseguimos incrementar su precisión sin penalizar
su eficiencia. Además, en nuestra investigación también incluimos detallados análisis de
errores que corroboran que las técnicas presentadas alivian el impacto de la propagación
de errores.

Queremos también destacar que las aportaciones descritas aquí son completamente
compatibles con sistemas basados en transiciones con beam-search y con cualquier otra
técnica que mejore la precisión del análisis. De hecho, nuestras cinco contribuciones
podrían ser conjuntamente aplicadas en el mismo sistema. Además, algunas de las
estrategias presentadas pueden ser trasladadas a otros analizadores de dependencias: por
ejemplo, el análisis no dirigido podría ser también beneficioso para técnicas basadas en
grafos.

A mayores, hemos ampliado el campo de aplicación de los analizadores de
dependencias más allá de la construcción de formalismos de dependencias. Presentamos
una nueva técnica para acometer análisis de constituyentes mediante sistemas de
dependencias. De esta forma, el análisis sintáctico puede ser llevado a cabo de forma
eficiente por un analizador de dependencias en cualquiera de los dos formalismos más
ampliamente utilizados. Obviamente, el analizador de dependencias puede incorporar
nuestras mejoras en precisión, para que éstas se extiendan también a los constituyentes.

En conclusión, podemos afirmar que las contribuciones desarrolladas durante la etapa
de tesis han enriquecido el campo del análisis basado en transiciones con nuevas técnicas,
además de proporcionar un novedoso enfoque para producir estructuras de constituyentes
de forma eficiente.
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