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Abstract. The minimum linear arrangement problem on a network consists of

finding the minimum sum of edge lengths that can be achieved when the vertices

are arranged linearly. Although there are algorithms to solve this problem on trees in

polynomial time, they have remained theoretical and have not been implemented in

practical contexts to our knowledge. Here we use one of those algorithms to investigate

the growth of this sum as a function of the size of the tree in uniformly random trees.

We show that this sum is bounded above by its value in a star tree. We also show that

the mean edge length grows logarithmically in optimal linear arrangements, in stark

contrast to the linear growth that is expected on optimal arrangements of star trees

or on random linear arrangements.
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1. Introduction

By the end of the last century, research on graphs was revolutionized by a series of

discoveries on the statistical properties of many real networks [1, 2, 3]:

• Degree distributions exhibit heavy tails, in stark contrast to the binomial

distribution of Erdős-Rényi graphs [2, 3].

• Their cliquishness, i.e. the probability that the first neighbours of a node are

connected, is high while in the corresponding Erdős-Rényi graph this probability is

low because it coincides with the network density of links [1].

• The so-called small-world phenomenon, i.e. the average geodesic distance between

vertices (the average minimum vertex-vertex distance) that is denoted by δ, is low

compared to n, the number of vertices of the network [1]. This phenomenon is

also shared with Erdős-Rényi graphs (provided that their density of links is large

enough). In these graphs, one has [1]

δ ≈ log n

log 〈k〉
, (1)

where 〈k〉 is the mean degree of vertices (〈k〉 � log n is needed by Eq. 1). A much

slower scaling of δ with respect to n is found in networks with power-law degree

distributions [4].

These seminal works spurred an industry of both theoretical and empirical research

(e.g., [5, 6, 7] and references therein). One avenue has been the investigation of the

networks or ensembles of networks that result from imposing certain constraints over

the exponentially huge space of possible networks [8, 9]. A fundamental contribution has

come from approaches that extend ideas and concepts from statistical mechanics and

information theory to complex network ensembles [9, 10]. A precursor of this approach is

the configuration model, which focuses on an ensemble of networks that have the same

degree sequence [8]. Further examples are research shedding light on the prevalence

of disassortative mixing in real networks [11] or analyses that unveil the higher level of

order of network ensembles with power-law degree distributions with respect to networks

with homogeneous degree distributions [12].

In the investigations reviewed above, the topology of the network is free a priori.

Another possibility is to fix the network topology and impose further constraints on

it. This takes us to another research avenue that started before the complex networks

revolution: applications of statistical mechanics to solve combinatorial optimization

problems [13, 14]. Vertex coloring, perhaps one of the most popular of these

combinatorial problems [13], consists of assigning numbers from 1 to m to vertices

(every number representing a different color) so that m is minimized under the constraint

that no two connected vertices are assigned the same number. A perhaps less popular

example is the minimum cut linear arrangement problem (also known as mincut or

cutwidth problem) [15], which has also been investigated with statistical mechanics tools

[14]. The target of this article is another NP-hard optimization problem, a sister of the
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minimum cut linear arrangement problem, namely the minimum linear arrangement

(m.l.a.) problem [15]: the problem of assigning distinctive integers from 1 to n to each

vertex so as to minimize D, defined as the sum of the absolute differences between

numbers at both ends of every edge. A more detailed definition of the m.l.a. problem

will be presented next to introduce notation, indicate further connections with statistical

physics and present some specific motivations of our work.

Suppose that the vertices of a network are sorted in a sequence and that the length

of an edge is defined as the distance between the vertices involved. The m.l.a. problem

consists of finding the minimum sum of edge lengths over all possible orderings of vertices

[15]. More formally, suppose that the network has n vertices and that π(v) is the position

of vertex v in an ordering of the vertices (1 ≤ π(v) ≤ n). π is a one-to-one mapping

between vertices and integers between 1 and n. The sum of edge lengths can be defined

as a sum over all edges as

D =
∑
u∼v
|π(u)− π(v)|, (2)

where u ∼ v indicates an edge between vertices u and v and |π(u)− π(v)| is the length

of u ∼ v. Solving the m.l.a. problem for a given network consists of finding Dmin, the

minimum value of D among all the possible π that define a linear ordering of the vertices.

The π’s where D = Dmin define minimum linear arrangements. Although the solution

of the m.l.a. problem is an NP-hard optimization problem in general, polynomial time

algorithms for undirected trees are available [16, 17, 18].

Here we will investigate the scaling of Dmin as n increases over the ensemble of

uniformly random trees, where the m.l.a. problem is computationally tractable. As a

tree has n − 1 edges, Dmin/(n − 1) is the mean length of edges in a minimum linear

arrangement. Here we will show that Dmin/(n− 1) grows logarithmically with the size

of the random tree, a feature reminiscent of Eq. 1 for unrestricted networks. The m.l.a.

problem can be seen as a particular case of an arrangement of a tree in an m-dimensional

lattice, where m = 1 in the customary formulation of the problem. In this regard, our

research is related to studies on spanning trees in m-dimensional lattices [19, 20]. While

in our case the tree structure is fixed and the goal is to find an optimal ordering of

the vertices, the tree structure is variable in those studies. As a problem of constraints

on the ensemble of possible permutations of a sequence (defined by the vertices of a

tree), the m.l.a. is connected with research on the distribution of the distance between

elements in a sequence, with edge length being a particular case [21, 22]. If no constraint

is imposed, the probability that an edge has a certain length decays linearly with the

distance between the vertices [21, 22]. When D is constrained (not necessarily reaching

Dmin), an exponential-like distribution is obtained [22]. Interestingly, an exponential

decay of probability is found in real syntactic dependency trees [22].

The motivation of our work is three-fold.

First, we aim to expand a large body of research on the scaling of tree properties

as n increases, e.g., [23, 24, 25, 26, 27]. A popular example is the growth of t(n), the
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number of different trees of n vertices, which is [23]

t(n) = nn−2 (3)

for labelled trees. Concerning unlabelled trees, the calculation of t(n) is a harder problem

but it is known that [24]

t(n) ∼ c1αc
n
2n
−5/2 (4)

as n→∞ with c1 and c2 being two constants.

Another example of scaling law is the expectation of V [k], the degree variance of a

tree, in uniformly random trees of a given number of vertices, which obeys [25, 26]

〈V [k]〉 =
(

1− 1

n

)(
1− 2

n

)
. (5)

Hereafter we use 〈...〉 to refer to expectations over the ensemble of uniformly random

labelled trees with a certain number of vertices n. In this article, we will contribute

with an investigation of the relationship between 〈Dmin〉 and n.

Second, Dmin is a baseline for research on the scaling of D in syntactic dependency

trees [22, 28, 29, 30], and thus the scaling of Dmin in uniformly random trees could

also be a reference or baseline for future research on the scaling of Dmin in syntactic

dependency trees.

Third, algorithms for solving the m.l.a. problem on trees [17, 18] have remained

theoretical. As far as we know, they have never been implemented for practical

reasons. Implementing them in a less theoretical setup gives us a chance to verify

their correctness.

The remainder of the article is organized as follows. Section 2 presents some

technical background and definitions that are necessary for other sections. Section

3 derives an upper bound of Dmin. Section 4 presents the logarithmic growth of

〈Dmin〉 /(n − 1) as a function of n and related results of computer simulations over

the ensemble of uniformly random trees. Finally, Section 5 discusses all the results

obtained.

2. Background

Analytical solutions for Dmin are available for certain kinds of trees:

• A linear tree (e.g., figure 1 (a)), a tree whose maximum vertex degree is 2 [31]. In

a linear tree [32],

Dmin = n− 1. (6)

• A star tree (e.g., figure 1 (b)), a tree with one vertex with maximum degree, the

rest with degree 1 [31]. In a star tree [33],

Dmin =
n2 − x

4
, (7)

where x indicates if n is odd (x = 1 if n is odd and x = 0 otherwise).
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(a)

(b) 2 2

(c) 2

Figure 1. All (unlabelled) undirected trees with 5 nodes, (a) linear tree, (b) star

tree, (c) quasi-star tree [27]. The lengths of edges that are greater than 1 are indicated.

• In a complete binary tree,

Dmin = 2k
(
k

3
+

5

18

)
+ (−1)k

2

9
− 2, (8)

where k = log2(n+ 1) is the number of levels [34].

• In complete trees of k levels where the root is attached to a couple of complete

ternary trees of k − 1 levels,

Dmin = 2(k − 1)3k−2 (9)

for k ≥ 2 [34].

It is easy to see that Dmin ≥ Dlinear
min , where Dlinear

min is the value of Dmin of a linear

tree with the same number of vertices, defined in equation (6) [32]. Here will show that

Dmin ≤ Dstar
min, where Dstar

min is the value of Dmin of a star tree with the same number of

vertices, defined in equation (7).

〈Dmin〉, the expectation of Dmin in the ensemble of uniformly labelled trees with a

certain number of vertices, can also be seen as the average value of Dmin in all possible

labelled trees of the same size. Suppose that 〈D〉 is the average value of D in uniformly

random trees where vertex labels are taken as vertex positions. Then the growth of 〈D〉
as a function of n should be close to Drandom, the expectation of D in uniformly random

linear arrangements of the n vertices of an arbitrary tree, which is [21, 22]

Drandom =
(n− 1)(n+ 1)

3
. (10)

Since trees have n − 1 edges, their mean edge length is D/(n − 1) [22]. We will show

that 〈Dmin〉 /(n− 1) grows logarithmically for n ≥ 3, i.e.

〈Dmin〉 /(n− 1) ≈ a log n+ b, (11)

where a and b are two constants and then

〈Dmin〉 ≈ a(n− 1) log n+ (n− 1)b. (12)

Note that (11) is in stark contrast to the linear growth of D/(n − 1) in uniformly

random linear arrangements – see (10) – or the upper bound provided by optimal linear

arrangements of star trees – see (7).
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The next section presents a derivation of an upper bound of Dmin that is in turn

bounded above by Drandom.

3. Upper bound for Dmin

Suppose an algorithm A to obtain a linear arrangement π for a tree T with n ≥ 1:

• If n = 1 then π(1) = 1 and finish the algorithm.

• Select a leaf u (every tree where n > 1 has at least two leaves [35, p. 11]).

• Let T ′ be the result of removing u from T .

• Obtain a linear arrangement π′ for T ′ recursively with this algorithm.

• Let us use the subindex f to refer to first and the subindex l to refer to last.

Accordingly, let πf be the linear arrangement consisting of placing u first (f)

followed by the remainder of the vertices according to π′. Similarly, let πl be

the linear arrangement consisting of placing u last (l) preceded by the remainder

of the vertices according to π′. Let v be the node to which u is attached in T . Let

df be the length of the edge u ∼ v in πf and dl be the length of that edge in πl.

• Find a linear arrangement for T given π′: if df < dl then π = πf ; π = πl otherwise.

As an illustration of this algorithm, let us consider figure 2 (a) where there is an

optimal linear arrangement of a quasi-star tree with 5 nodes. Figures 2 (b-c) show

the series of linear arrangements that the algorithm produces when the leaves that it

chooses follow the order A, D, B, C. Notice that the final linear arrangement (figure 2

(c)) is not optimal (recall figure 2 (a)). Figure 2 (b) shows that the first arrangement

has only node E. For the second arrangement the algorithm places node C after the

arrangement for node E. For the third arrangement the algorithm places node B after

the arrangement for nodes E and C, etc. In contrast, when the order is E, D, C, A,

the algorithm produces a series of linear arrangements (figure 2 (d-e)) where the final

linear arrangement is optimal (figure 2 (e)).

Let DA be the sum of dependency lengths of a linear arrangement produced with

the linearization algorithm above. By definition, Dmin ≤ DA. It is easy to see that

Dmin = DA for linear trees and star trees of any number of nodes. The question is

whether Dmin = DA in general. As trees for 1 ≤ n ≤ 4 are only star trees or linear

trees, examples where Dmin < DA require n ≥ 5. Figure 1 shows all the trees with

5 nodes: a linear tree, a star tree and a quasi-star tree. Since Algorithm A satisfies

Dmin = DA for linear and star trees, we just need to check whether Dmin = DA or not

for that quasi-star tree. It turns out that the algorithm can produce linear arrangements

that are not optimal by an unlucky choice of the order of leaves as we have shown in

figures 2 (b-c). Similar counterexamples can be built for larger trees. Therefore, we

conclude that Dmin ≤ DA for n > 4 and Dmin = DA for n ≤ 4. Those familiar with the

complexity of efficient algorithms for solving the minimum linear arrangement problem

[17, 18] should not find surprising that Dmin = DA does not hold in general.
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(a)

A B C D E

2

(b)

E E C E C B E C B D

2

(c)

E C B D A

2 2

(d)

B B A C B A D C B A

(e)

E D C B A

2

Figure 2. (a) Minimum linear arrangement of a tree of 5 vertices. (b-c) A sequence

of linear arrangements produced by algorithm A for the tree in (a) that ends with

a suboptimal arrangement in (c) (D = 6). (d-e) Another sequence ending with an

optimal arrangement in (e) (D = 5).

Now we will derive an upper bound for DA. If T has one vertex then DA = 0. If T

has at least two vertices then

DA = min(df , dl) +D′A, (13)

where D′A is the sum of dependency lengths of T ′. min(df , dl) can be calculated easily

with the help of π′. Since df = π′(v) while dl = n− π′(v), one has that

min(df , dl) = min(π′(v), n− π′(v)) (14)

As 1 ≤ π′(v) ≤ n− 1,

min(df , dl) ≤ max
1≤π′(v)≤n−1

min(π′(v), n− π′(v)), (15)

we get

min(df , dl) ≤
{

n
2

if n is even
n−1
2

if n is odd.
(16)

Intuitively, (16) means that the worst case for the minimal length of the edge u ∼ v is

when v is in the middle of the linear arrangement, so both df and dl are large. If v is,

say, near the beginning, dl will be large, but df will be small and therefore the minimum

of both will be small.

Knowing this, DA,max, an upper bound for DA, is easy to derive assuming n ≥ 1.

Suppose that DA(n) is the sum of dependency lengths produced by algorithm A for a
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tree of n vertices and DA,max(n) is an upper bound of it. Then equation (13) gives

DA(n) = min(df , dl) +DA(n− 1) (17)

≤ min(df , dl) +DA,max(n− 1) = DA,max(n) (18)

with DA(1) = DA,max(1) = 0.

If a tree has n vertices it has n−1 edges and then Algorithm A produces the length

of n− 1 edges. If n is odd, the recursive application of equation (18) and the definition

of min(df , dl) in (16) give

DA,max(n) =
n− 1

2
+
n− 1

2
+
n− 3

2
+
n− 3

2
+
n− 5

2
+
n− 5

2
+ ...+ 2 + 2 + 1 + 1.(19)

Thus, one has

DA,max = 2

n−1
2∑
i=1

i (20)

=
(n− 1)(n+ 1)

4
. (21)

In n is even, the recursive application of equation (18) and the definition of min(df , dl)

in (16) give

DA,max(n) =
n

2
+
n− 2

2
+
n− 2

2
+
n− 4

2
+
n− 4

2
+
n− 6

2
+
n− 6

2
+ ...+2+2+1+1.(22)

Thus, one has

DA,max(n) =
n

2
+ 2

n−2
2∑
i=1

i (23)

=
n2

4
. (24)

This allows one to conclude that

DA,max =
n2 − x

4
, (25)

where x is a binary variable indicating if n is odd (x = 1 if n is odd; x = 0 otherwise).

Interestingly, DA,max coincides with Dstar
min, the value of Dmin of a star tree defined in

(7). Since Dmin ≤ DA and DA ≤ Dstar
min we conclude that Dmin ≤ Dstar

min with equality if

the tree is a star tree. See Appendix A for details on how we validated this result.

It is easy to prove that Dstar
min ≤ Drandom. By the definitions of Dstar

min and Drandom

(equations (7) and (10), respectively), this is equivalent to

n2 − x
4

≤ n2 − 1

3
, (26)

which becomes

4− 3x ≤ n2 (27)

after some algebra. Recalling that x is indeed a function of n, a simple evaluation of

the inequality from n = 1 onwards allows one to conclude that Dstar
min ≤ Drandom holds

for n ≥ 1, with equality if and only if n = 1 or n = 2.



The scaling of the minimum sum of edge lengths in uniformly random trees 9

4. The scaling of Dmin in uniformly random labelled trees

To investigate the scaling of 〈Dmin〉 in uniformly random labelled trees, we generated

random labelled trees and calculated the value of Dmin for each tree using Shiloach’s

algorithm [17]. Since algorithms of this kind have remained theoretical for decades (they

have not been implemented and used in depth) a thorough testing of our implementation

of Shiloach’s algorithm is vital. See the Appendix for details about the tests that we

considered to validate that implementation.

A uniformly random labelled tree can be generated in different ways. One possibility

is the Aldous-Brother algorithm [36, 37], assuming a complete graph as the basis of the

random walk. Another possibility is to generate a uniformly random Prüfer code and

then to obtain the corresponding tree. A Prüfer code for a tree of n nodes is a sequence

of n−2 integers between 1 and n that identifies a unique labelled tree [38]. We decided to

use Prüfer codes for generating random trees because the same procedure is also helpful

to generate all possible labelled trees when testing Shiloach’s algorithm (see Appendix).

Figure 3 shows that the growth of 〈Dmin〉 as a function of n is almost linear in

uniformly random labelled trees. Figure 3 also shows the equivalence between Drandom,

the expected value of D in a uniformly random linear arrangement, and 〈D〉 as defined

above.

〈Dmin〉 /(n−1), i.e. the mean dependency length of minimum linear arrangements of

uniformly random trees of n vertices, will help us to shed light on the actual dependency

between Dmin and n. Figure 4 (a) suggests that 〈Dmin〉 /(n− 1) grows logarithmically

as n increases. Such a logarithmic growth is confirmed by the straight line that appears

when taking logs on the x-axis for n ≥ 3 (figure 4 (b)). Notice that the value of

〈Dmin〉 /(n− 1) is the same for n = 2 and n = 3.

The logarithmic growth of 〈Dmin〉 /(n− 1) is in stark contrast to

• The linear growth of 〈D〉 /(n− 1) in random linear arrangements (or equivalently,

as shown above, in uniformly random labelled trees where vertex labels are taken

as vertex positions), as expected from (10), which gives 〈D〉 /(n − 1) = (n + 1)/3

(figure 4).

• The linear growth of the upper bound of 〈Dmin〉 /(n− 1), i.e. Dstar
min/(n− 1) which

is ≈ (n+ 1)/4 according to (7) (Fig. 4).

Further support for the logarithmic growth of 〈Dmin〉 /(n − 1) is provided in figure 5,

where exponentially increasing values of n are employed to check if the growth is the

same for large values of n. Again a straight line is recovered when logs are taken on

the x-axis. Interestingly, a least squares linear regression for the relationship between

〈Dmin〉 /(n− 1) and log n for n ≥ 3 in figure 5 provides support for

Dmin/(n− 1) ≈ a log n+ b (28)

with a = 0.27 and b = 0.68. Figure 5 indicates that (28) predicts the true values with

high accuracy. n = 2 is excluded from the fit because Dmin/(n− 1) = 1 for both n = 2
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Figure 3. (a) The growth of 〈Dmin〉, the average minimum sum of dependency

lengths in uniformly random trees, as a function of n, the number of vertices of

the tree (black line). For a given tree size, 〈Dmin〉 is estimated over 104 uniformly

random trees. For reference, we also show Dstar
min , the upper bound of Dmin (red line),

Drandom, the expected value of the sum of dependency lengths in uniformly random

linear arrangements (blue line) and 〈D〉, the mean value of D in uniformly random

labelled trees where vertex labels are taken as vertex positions (yellow line). The latter

cannot be seen because it is covered by the curve of Drandom. (b) The same as (a) in

double logarithmic scale.

and n = 3 and the function that we are fitting is strictly monotonous. Equation (28)

allows one to conclude that Dmin follows

〈Dmin〉 ≈ a(n− 1) log n+ (n− 1)b. (29)

with high accuracy.

5. Discussion

In this article, we have improved our understanding of the limits of the variation of

Dmin in trees. The results presented in Section 3 allow one to conclude that

Dlinear
min ≤ Dmin ≤ Dstar

min ≤ Drandom (30)
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Figure 4. (a) The growth of 〈Dmin〉 /(n−1), the average minimum mean dependency

length in uniformly random trees, as a function of n, the number of vertices of

the tree (black line). 〈Dmin〉 is estimated over 104 uniformly random trees. For

reference, we also show Dstar
min/(n − 1), the upper bound of Dmin/(n − 1) (red line)

and Drandom/(n− 1), the expected value of the mean dependency length in uniformly

random linear arrangements (blue line). (b) The same as (a) but using logarithmic

scale for the x-axis.

for n ≥ 1. The bounds of Dmin involving linear and star trees are reminiscent of the

limits of the variation of 〈k2〉, the second moment of degree about zero of a network of

n vertices, i.e. 〈
k2
〉

=
1

n

n∑
i=1

k2i , (31)

where ki is the degree of the i-th vertex. Interestingly, 〈k2〉 in trees of the same size

obeys [32] 〈
k2
〉linear

≤
〈
k2
〉
≤
〈
k2
〉star

, (32)

where 〈k2〉linear = 4− 6/n is the value of 〈k2〉 in a linear tree and 〈k2〉star = n− 1 is the

value of 〈k2〉 in a star tree.
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Figure 5. The growth of 〈Dmin〉 /(n − 1), the average minimum mean dependency

length in uniformly random trees, as a function of n, the number of vertices of the tree

(black circles). 〈Dmin〉 is estimated over 200 uniformly random trees. The values of n

chosen are obtained with n = b(3/2)k + 2c for k = 1, 2, 3, ..., 20. For reference, we also

show the best fit of Dmin/(n− 1) = a log n+ b (dashed line), Dstar
min/(n− 1), the upper

bound of Dmin/(n − 1) (red circles), and Drandom/(n − 1), the expected value of the

mean dependency lengths in uniformly random linear arrangements (blue circles).

In this article, we have also shown that the mean edge length in optimal linear

arrangements grows logarithmically with the size of the tree. The origins of such a

growth should be the subject of future research. Note that (30) and the definitions of

Dlinear
min and Dstar

min in (6) and (7) imply that

1 ≤ Dmin

n− 1
≤ n2

4(n− 1)
≈ n

4
. (33)

Given this wide range of variation, the fact that 〈Dmin〉 /(n− 1) grows logarithmically

with n suggests that 〈Dmin〉 /(n − 1) is dominated by trees with low Dmin far from

the linear growth of star trees and closer to linear trees. A similar behavior is found

in the scaling of the expected number of edge crossings in uniformly random labelled

trees, which is far from that of star trees and closer to that of linear trees [31]. The

origins of that logarithmic growth should be the subject of future research. A possible

application of our result could be in research on the scaling of D or D/(n−1) in syntactic

dependency trees, where pressure to minimize dependency lengths is supported both

empirically [22, 39, 28, 30] and theoretically [40, 33, 27]. The logarithmic dependency

described by equation (11) appears to be a relevant candidate model for the actual

dependency between D/(n − 1) and n in those trees [22, 30]. The suitability of this

candidate may depend on the extent to which real syntactic dependency lengths are
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optimized. Having said this, the logarithmic dependency is an unavoidable candidate

to investigate the scaling of the actual dependency between 〈Dmin〉 /(n − 1) and n in

optimal linear arrangements of syntactic dependency trees and other kinds of real trees.

Appendix A. Validation of Shiloach’s algorithm

To solve the minimum linear arrangement problem we implemented Shiloach’s algorithm

incorporating a recent correction [41].

For a given tree, the correctness of the value of Dmin calculated by our

implementation of the corrected version of Shiloach’s algorithm for a given tree was

checked in three different ways:

(i) Since the output of Shiloach’s algorithm is both Dmin and πmin, a minimum linear

arrangement (a one-to-one mapping π yielding Dmin), we checked that the value of

Dmin coincides with the value of D obtained from πmin.

(ii) By means of known examples or theoretical results giving the exact value of Dmin

or bounds.

(iii) By means of a brute force algorithm that allows one to check the correctness of the

results for small trees. The algorithm is less error prone than Shiloach’s algorithm,

as it is conceptually simpler and much easier to implement, but it is computationally

very expensive.

The next subsections provide further details about the second and the third evaluation

procedure.

For a given n, we performed two kinds of exploration of the space of possible trees:

• An exhaustive exploration, i.e. Shiloach’s algorithm was tested against all possible

labelled trees, generated with the help of Prüfer codes [38].

• Random exploration, i.e. Shiloach’s algorithm was tested against uniformly random

trees, obtained by generating uniformly random Prüfer codes [38].

Given the high cost of the brute force algorithm, we performed explorations with and

without using the brute force test, in order to be able to test Shiloach’s algorithm

with larger trees. All these options lead to four possibilities for validation that are

summarized in Table A1 with the corresponding values of n that were used in each

case. These tests are not only used to check the correctness of our implementation of

Shiloach’s algorithm, but also serve as a test for the inequality Dmin ≤ Dstar
min, derived

in Section 3.

Appendix A.1. Exact values or bounds for Dmin

Our implementation of Shiloach’s algorithm was tested with trees for which Dmin can

be obtained via formulae:

• Linear trees (recall (6)).
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Table A1. A summary of the values of n that were used for testing in all the four

evaluation conditions. The number of random samples used varies for computational

reasons: 20 for *, 100 for ** and 200 for ***, as it is explained in figure 5.

all tests all tests excluding the brute force algorithm

exhaustive 1 ≤ n ≤ 10 1 ≤ n ≤ 11

random sampling 11 ≤ n ≤ 19∗ 12 ≤ n ≤ 1000∗∗

n = (3/2)k + 2 for k = 1, 2, ..., 20∗∗∗

• Star trees (recall (7)).

• Complete binary trees (recall (8)). When k = 5, Dmin = 60. This means that

on average, the length of an edge is two (since k = 5 implies n = 30 vertices).

Complete binary trees are powerful test cases for two reasons:

– For k < 5 the m.l.a. is given by an inorder traversal of the vertices starting

on the root of the binary tree. For k ≥ 5 the strategy ceases to provide the

solution of the m.l.a. [34].

– The original version of Shiloach’s algorithm fails when k ≥ 5 [41].

• A kind of ternary trees (recall (9)).

The solution of the m.l.a. for concrete trees is shown in previous publications:

• Suppose that DNC
min is the solution to the m.l.a. problem when edge crossings are

not allowed. Figure 1 of [42] is an interesting test because the solution to the

m.l.a. when crossings are not allowed (DNC
min = 24) differs from the solution of the

unconstrained m.l.a. (Dmin = 23). These examples are reproduced in figures A1

(a-b).

• Another example of a minimum linear arrangement with crossings is the complete

5-level binary tree in figure 1 of [34]. The linear arrangement in that figure has a

typo: the vertex labelled with 12 has two successors: a vertex labelled with 4 and

another labelled with 1. The label of the latter should be 11. Figure A2 shows the

correct linear arrangement.

• Figure 4C of [43] with Dmin = 11 (figure A1 (c)).

In general, the value of Dmin must satisfy the following properties:

• Dmin ≤ D, where D is the actual sum of dependency lengths of the tree or the sum

of dependency lengths that is obtained interpreting vertex labels between 1 and n

as vertex positions.

• Dmin ≤ Dstar
min, with Dstar

min defined as in (7).

• Dmin ≤ DNC
min. DNC

min is calculated in linear time with Hochberg & Stallmann’s linear

time algorithm [44, 42].
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(a) 4

2
3

(b)
3

6

(c) 2 2 2

Figure A1. Minimum linear arrangements of trees (only the length of edges that

are longer than unity is indicated) (a) The minimum linear arrangement of a tree.

The total sum of dependency lengths is D = 14 · 1 + 1 · 2 + 1 · 3 + 1 · 4 = 23. (b)

A minimum linear arrangement of the same tree of (a) when crossings are disallowed,

with D = 15 · 1 + 1 · 3 + 1 · 6 = 24. (c) A minimum linear arrangement of a syntactic

dependency tree with D = 5 · 1 + 3 · 2 = 11. (a) and (b) are adapted from [42]. (c) is

adapted from [43].

*

2

8

2 2 2

4

2

*

4

2 2

8

2 2 2

Figure A2. A minimum linear arrangement of a complete binary tree of 5 levels

with D = 16 · 1 + 10 · 2 + 2 · 4 + 2 · 8 = 60. The example is adapted from [34]. The tree

is too long, therefore it is broken into two lines. The vertex marked with * is shared

by the two pieces of the tree.

• Dmin is bounded below by a function of n and 〈k2〉 (the degree second moment

about zero of a tree) as [32]

Dmin ≥
n

8(n− 1)

〈
k2
〉

+
1

2
. (A.1)

Appendix A.2. Validation with the help of a brute force algorithm

The results of our implementation of Shiloach’s algorithm to solve the m.l.a. problem

are compared against those of a brute force algorithm for small trees. Tentatively, the

brute force algorithm should be simpler and therefore less error prone. A straightforward

brute force algorithm consists of generating the n! permutations of the vertices to find

the smallest D. This huge permutation space is reduced a little bit noting that all the

permutations where the leaves attached to the same internal vertex have exchanged
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their positions give the same D. If the space of permutations is explored in a way that

all the leaves attached to the same internal vertex are visited always in the same order,

S, the size of the space to explore, reduces from S = n! to

S =
n!

Πn
i=1(li!)

, (A.2)

where li = 1 if the i-th vertex is not connected to any leaf (this can happen if the i-th

vertex is a leaf or the i-th vertex is an internal vertex that it is not connected to any

leaf); otherwise, li is the number of leaves attached to the i-th vertex. Suppose a star

tree. Then li = n− 1 for the hub and li = 1 for the remainder of the vertices and then

S = n (a dramatic reduction of the space of permutations). Suppose a linear tree, then

li = 1 for every vertex and then S = n! (no reduction of the space of permutations).
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