
Shallow recurrent neural network for personality
recognition in source code

Yerai Doval
Grupo COLE, Departamento

de Computación
E.S. de Enxeñaría Informática,

Universidade de Vigo
Campus As Lagoas, 32004 –

Ourense (Spain)
yerai.doval@uvigo.es

Carlos Gómez-Rodríguez
Grupo LYS, Departamento de

Computación
Facultade de Informática,
Universidade da Coruña

Campus de Elviña, 15071 – A
Coruña (Spain)

cgomezr@udc.es

Jesús Vilares
Grupo LYS, Departamento de

Computación
Facultade de Informática,
Universidade da Coruña

Campus de Elviña, 15071 – A
Coruña (Spain)

jvilares@udc.es

ABSTRACT
Personality recognition in source code constitutes a novel
task in the field of author profiling on written text. In this
paper we describe our proposal for the PR-SOCO shared
task in FIRE 2016, which is based on a shallow recurrent
LSTM neural network that tries to predict five personality
traits of the author given a source code fragment. Our pre-
liminary results show that it should be possible to tackle the
problem at hand with our approach but also that there is
still room for improvement through more complex network
architectures and training processes.

CCS Concepts
•Applied computing → Law, social and behavioral
sciences; Psychology; Document analysis; •Human-
centered computing → Text input; •Social and pro-
fessional topics → User characteristics; •Computing
methodologies→ Natural language processing; Neu-
ral networks;

Keywords
personality recognition, source code, recurrent neural net-
work, LSTM

1. INTRODUCTION
Written text can tell us a lot about its author. Demo-

graphic information such as age, gender or specific person-
ality traits of the author can be inferred by a human expert
by the sole observation of a written text fragment [7]. This
task is called author profiling, and it can be also applied to
other channels such as speech or body language. But de-
tecting the patterns which allow for this kind of information
extraction is not restricted to humans, as we will see in this
work.

Source code is another form of written text, and it is be-
coming very accessible as software developers are now able
to easily publish their work on the Web through services
such as Github1 or Bitbucket.2 Although more constrained
and formal than natural language, source code text may also
have something to tell us about its author, as there is still
room for personal preferences in its writing. For instance,

1https://github.com/
2https://bitbucket.org/

some coders tend to use block delimiters even when they are
not necessary, or to add a certain number of blank lines in or-
der to clearly separate two function declarations. Morevoer,
variable and function names are custom made by the coder,
and commentaries include information in natural language.
Therefore, it sounds reasonable to take advantage of this
type of patterns to attempt to extract information about
the author of a source code fragment, which constitutes a
novel task in the author profiling field.

In this work, we describe our contribution to the Per-
sonality Recognition in SOurce COde (PR-SOCO) shared
task [13], held in conjunction with the FIRE 2016. The
objective of this task is quantifying five personality traits
about the author of a given source code fragment, namely,
the standard traits from the Big Five Theory [6]: extrover-
sion, emotional stability/neuroticism, agreeableness, consci-
entiouness and openness to experience. To achieve this, we
propose using a shallow recurrent neural network that, tak-
ing as input the sequence of bytes in an input source code
text, will try to predict the five values for the corresponding
traits of its author. By reading the most elementary unit
available for encoded text, the byte (in most cases directly
aligned with individual characters), we seek to find all possi-
ble useful patterns carved deep into the text. Furthermore,
with this approach we are not limiting our models to those
patterns a human can grasp, but we are enabling the neural
network to extract any information it may consider useful
for the task.

The results obtained with our shallow networks are en-
couraging with respect to the root mean squared error metric
(RMSE), which is aligned with the smoothed mean absolute
error criterion employed in our training process. However,
they do not perform so well for Pearson Correlation (PC),
which we have not considered at this time. We have also
found that the use of more layers in our networks can im-
prove their performance, agreeing with previous work [17].

2. RELATED WORK
There has been a recent surge of interest on author pro-

filing related to personality recognition [14, 3].
For written text, traditional author profiling approaches

tend to rely on lexical and syntactical features, such as iden-
tification of key words, part-of-speech tags [1] or n-grams [10]
paired with statistical models such as Hidden Markov Mod-
els. There is also work which studies the application of

these traditional techniques on short informal texts, which
often translates into lower performance figures than those
obtained for regular texts [18].

However, author profiling is not restricted to written text.
Mairesse et al [12] extend this type of analysis to speech,
where features such as sound frequencies and the duration
of pauses made by the speaker are considered. Biel et al [2]
go one step further by analysing Youtube videos and adding
what they call “nonverbal cues” to the feature set, which
take into consideration the different types of motion that can
be observed in the video. There are even approaches that
analyse the structure and topology of the social network of
subjects [16].

Regarding the psychological aspects of this work, the pro-
posed task relies on the so-called Big Five Theory [6] to es-
tablish the personality traits to be predicted: extroversion,
neuroticism, agreeableness, conscientiousness, and openness
to experience. It is worth noting that although in trait the-
ory there are more than five traits, the most extended theo-
retical approaches reduce its total number to five, as in the
case of the Big Five Theory, or even to just three: neuroti-
cism, extraversion and psychoticism [15].

3. THE PROPOSED APPROACH
Written text, either natural language or source code, can

be viewed as a sequence of basic elements such as sentences,
words or characters, to name a few possibilities. Given a
particular domain, we can choose the sequential view of the
input text which best fits our needs. In our case, source code
is full of reserved keywords such as if, return or while, so a
word-based approach may seem appropriate at first, as the
word vocabulary seems to be relatively fixed and reduced.
However, the problem then comes with the custom names
given by the coder to classes, variables, functions, etc. which
have an unpredictable nature and do not fit well in a strict
vocabulary approach. Furthermore, it would be interesting
that the vocabulary of sequence elements was as small as
possible since this affects the required size of the input layer
of our models. In order to keep things simple, we will not
follow a word-level or character-level approach but a pure
byte-level approach, thus limiting the size of the vocabulary
to 256 possible byte values.

To process these byte sequences we will use recurrent neu-
ral networks, as they are a perfect fit for sequential data [5].
Thus, each byte from the input sequence is fed to the net-
work at each time step through the input layer, which trans-
forms byte values into internal representations that can be
manipulated by the hidden layers of the network. Moreover,
the output of these hidden layers is not only influenced by
the current input but also by some of the information re-
tained from those bytes processed at previous time steps.
This is achieved thanks to the recurrent connections added
to the neurons in these layers of the network. Once the fi-
nal byte from the input sequence has been processed, the
output from the last hidden layer corresponding to the last
time step is then used to perform a linear transformation
and produce as a result a vector of five values, each of them
corresponding to a particular personality trait (as described
in Section 2). In order to achieve this, the network had to be
accurately trained to return relevant values at its output and
not just random garbage. In this case, we have configured it
to minimize the difference between its obtained output and
the desired one for each input sequence. More precisely, we

Figure 1: Simplified view of the neural network
used. The first layer should have 256 neurons, one
per possible input byte value. The second layer, the
only hidden layer in this case, is conformed by re-
current LSTM units. The last layer is the output
layer, and has exactly 5 neurons, one for each trait
we want to calculate.

have used a smoothed mean absolute error as the training
criterion of the network, which uses a squared term if the
absolute element-wise error falls below one, making it less
sensitive to outlier data and preventing exploding gradients,
a common problem in neural network training [8].

It is worth noting that, in contrast with previous work
(see Section 2), our approach does not require a feature engi-
neering phase as neural networks, in their training processes,
reflect the most interesting features from the input domain
in the values of their parameters, sometimes referred to as
weights.

Lastly, we opted for feeding the network with input in-
stances (sequences) which are independent from each other,
so that the important dependence relationships (patterns)
between elements (bytes) of a sequence may be observed
by our model. For this reason, we have constructed se-
quences from whole source code packages. As these se-
quences can be quite long (see Section 4), traditional re-
current networks may have problems to recall important in-
formation extracted at the beginning of the input sequence
while they are processing the last elements of it. In order
to address this limitation, we use long short term memory
(LSTM) units as the neurons in the hidden layers of the net-
work [9]. These units pack a memory cell and other elements
that manipulate its contents, thus enabling them to remem-
ber important information from the distant past of an input
sequence. See Figure 1 for a simplified visual representation
of this model.

4. EXPERIMENTS
Our models were implemented using the scientific frame-

work Torch [4] and the recurrent neural network library
torch-rnn [11]. We took advantage of the GPU computing
capabilities of these resources using an Nvidia GTX Titan
X. For further implementation details, the source code will
be made available at https://cloud.wyffy.com/index.php/s/
EphokbtRuQ43BWc.

int i1; 0 105 110 116 32 105 49 59

int in1; 105 110 116 32 105 110 49 59

int integ01; 105 110 116 32 105 110 116 101 103 48 49 59

int i2; 0 0 0 0 0 105 110 116 32 105 50 59

Figure 2: Text is represented as sequences of byte
values which are then gathered into batches (grey
filled rectangles) where they are padded with zeros
at the beginning.

Training and validation
First of all, we have preprocessed the training corpus given
by the PR-SOCO organization to best fit the training pro-
cedure of the neural network. In this vein, we have merged
the personality information (i.e. the personality trait values)
from each one of the 49 developers right after the end marker
of the package of their source code files. This way our input
format contains the input sequence to the network above
the marker and the desired output one line below. Then we
merged all resulting files into a single one and shuffled the
instances, resulting in a total of 1600 instances. The vali-
dation dataset was built taking the first 141 instances from
the resulting file, leaving the rest for training.

The shortest meaningful sequence in the training corpus
has length 34, the longest 27654 and the average one is ap-
proximately 4823 characters long. Regarding the personality
scores in the training corpus, their values fall in the range
20–80 and their means are: 49.92 for neuroticism, 45.22 for
extroversion, 49.51 for openness, 47.02 for agreeableness and
46.37 for conscientiousness.

In order to benefit from the processing power of the GPU,
we gathered input sequences into batches. Since all se-
quences in a given batch must have the same length, we
padded the shorter sequences with zeros at the beginning.
Unfortunately, this was not exactly the case throughout our
experiments, and until very recently the padding was being
added to the end of shorter sequences instead, giving rise
to a bug were these sequences were automatically discarded
in the training process. This bug did not affect experiment
settings with a batch size of 1.

We show in Figure 2 how some sample input texts are rep-
resented as sequences of byte values which are then gathered
into batches where they are appropriately padded with zeros
at the beginning.

The training process consists of 100 full cycles (epochs)
through the training corpus. The time needed to accomplish
this depends on the complexity of the network and the batch
size used. As an example, one epoch in a network with two
hidden layers of 300 neurons each and a batch size of 1 can
take up to 4.8 hours while using a batch size of 10 reduces
the training time to 2.6 hours. Similarly, adjusting the batch
size to 10, a network formed by a 300 neurons hidden layer
needs 2 hours to train through one epoch. It is important

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50 60 70 80 90 100

er
ro

r

epoch

1x300 train
1x300 val

1x500 train
1x500 val

2x300 train
2x300 val

Figure 3: Training and validation error evolution
through 100 training epochs for three different
model configurations.

#hlayers batch size
run01-v2 1 10
run02 2 10
run03-v2 1 20
run04 1 1
run05-v2 1 1

Table 1: Number of hidden layers and batch size
of the models used for the test runs. All of them
have 300 neurons per hidden layer. The difference
between run04 and run05-v2 is the training time,
greater in the latter case.

to note that this figures would be lower if we did not run
multiple training processes in parallel.

In Figure 3 we show our preliminary experiments to attest
for the capacity of our models to tackle the task at hand.
Although the observed behaviour in training time of these
models was acceptable and invited us to use them against
the test corpus (which we will describe shortly), they were
affected by the padding bug mentioned earlier and cannot
be considered as clear evidence of the performance of the
models. Since the batch size was established to 10, the bug
caused the models to train with a tenth of the total training
and validation instances. In any case, as we can see in the
graph, it seems beneficial for the generalization capabilities
of a neural network trained for this task to add at least one
extra hidden layer to its architecture (steady training data
fit and lower final validation error), while adding neurons to
a sole hidden layer results in a counterproductive measure.

Testing and official results
The test corpus supplied by the PR-SOCO organization did
not undergo a preprocessing stage such as the one described
above. In this case we have to evaluate 21 developers whose
source code is fragmented in 750 test instances. The maxi-
mum sequence length observed is 33550, the minimum 114
and the mean 3743.

For the five runs performed on the test data, we have used
five different models differing in the number of hidden layers
and batch size to be employed, which are related in Table 1.

N E O A C
run01-v2 11.99 11.18 12.27 10.31 8.85
run02 12.63 11.81 8.19 12.69 9.91
run03-v2 10.37 12.5 9.25 11.66 8.89
run04 29.44 28.8 27.81 25.53 14.69
run05-v2 11.34 11.71 10.93 10.52 10.78
task mean 12.75 12.27 10.49 12.07 10.74

Table 2: Official PR-SOCO RMSE results over
5 runs. Personality traits: (N)euroticism,
(E)xtroversion, (O)pennes, (A)greeableness and
(C)onscientiousness. run02 is the only run affected
by the batch padding bug.

N E O A C
run01-v2 -0.01 0.09 -0.05 0.2 0.02
run02 -0.18 0.21 -0.02 -0.01 -0.3
run03-v2 0.14 0.0 0.11 -0.14 0.15
run04 -0.24 0.47 -0.14 0.38 0.32
run05-v2 0.05 0.19 0.12 -0.07 -0.12
task mean 0.04 0.06 0.09 -0.01 -0.01

Table 3: Official PR-SOCO PC results over
5 runs. Personality traits: (N)euroticism,
(E)xtroversion, (O)pennes, (A)greeableness and
(C)onscientiousness.

All of them have 300 neurons per hidden layer and have
been trained with the whole training corpus, including the
validation part. Note that the difference between run04 and
run05-v2 is the training time, longer in the latter case. The
only run affected by the padding bug was run02.

In Tables 2 and 3 we can see our official results obtained
for the PR-SOCO task. In general, the correlation scores
are quite low while the RMSE figures are acceptable (con-
sidering that they beat the task average) except for run04,
whose better results in correlation might be attributed to a
mere coincidence. On the other hand, we see that RMSE
scores for run02 are quite good despite being the only case
affected by the batch padding bug mentioned above. This
fact seems to be related with the benefits provided by the
extra network layer that the corresponding model has with
respect to the rest. We can also observe, in the difference
between run04 and run05-v2, that allowing the model to
train for longer periods of time is indeed useful to attain
good performance. Finally, at this time the data available
do not allow us to extract any particular conclusion about
the influence of the batch size on our results.

It is worth noting that, unfortunately, we could not re-run
the 2-hidden layer network without the padding bug against
the test corpus because of time constraints. Nevertheless, in
order to confirm the hypothesis that adding an extra layer
to the network is beneficial to its performance, we have con-
ducted some a posteriori experiments with the training cor-
pus. In Figure 4 we can see how the 2-hidden layer network
obtains, once again, better generalization capabilities than
the 1-hidden layer network.

5. CONCLUSIONS
Source code is a form of written text which has been be-

coming very accessible in recent years. While more con-

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

er
ro

r

epoch

1x300 train
1x300 val

2x300 train
2x300 val

Figure 4: Training and validation error evolution
for 1 and 2-hidden layer networks not affected by
the padding bug.

strained and formal than natural language due to its very
nature, it also allows for some personal preferences to pour
down into its structure and content, giving rise to the pos-
sibility of author profiling on it.

In this paper we have shown our proposal for personality
recognition in source code. Viewing such text as a sequence
of characters (or bytes), we have used shallow recurrent neu-
ral networks as our personality trait predictors. In order to
maximize the pattern detection capabilities of our model, we
have fed entire source code packages as sequence inputs to
the network. The network learning criterion was a smoothed
mean absolute error, less sensitive to outliers than RMSE or
the mean absolute error.

Given the encouraging results obtained, we think that our
approach may be a viable one to tackle this problem. On one
hand, the RMSE figures obtained, which are aligned with
the criterion we were optimizing for, are positive consider-
ing that we have used a shallow network, whose expressivity
power is limited, with large input sequences. On the other
hand, we have found some hints pointing at a better per-
formance in the case of using deeper neural networks and
training them for longer periods of time, which may consti-
tute immediate ways of improving our results.

As future lines of work, we will try to improve our results
by adding more layers to our neural network—in a one-by-
one fashion until we see no more significant improvement—,
and also by introducing a new training criterion that consid-
ers the correlation between instances. Another interesting
research line would be the study and visualization of the
activation mechanisms which occur within the network at
evaluation time in order to try to interpret the patterns, or
features, that the model has previously extracted during the
training phase. In other words, to analyse the behaviour of
the network to try to observe human interpretable patterns
and thus distil the knowledge condensed in the network.

6. ACKNOWLEDGMENTS
This work has been partially funded by the Spanish Min-

isterio de Economı́a y Competitividad through projects
FFI2014-51978-C2-1-R and FFI2014-51978-C2-2-R, and by
Xunta de Galicia through an Oportunius program grant.

We gratefully acknowledge NVIDIA Corporation for the
donation of a GTX Titan X GPU used for this research.

7. REFERENCES
[1] S. Argamon, M. Koppel, J. Fine, and A. R. Shimoni.

Gender, genre, and writing style in formal written
texts. TEXT, 23(3):321–346, 2003.

[2] J.-I. Biel, O. Aran, and D. Gatica-Perez. You Are
Known by How You Vlog: Personality Impressions
and Nonverbal Behavior in Youtube. In ICWSM, 2011.

[3] F. Celli, B. Lepri, J.-I. Biel, D. Gatica-Perez,
G. Riccardi, and F. Pianesi. The Workshop on
Computational Personality Recognition 2014. In
Proceedings of the 22nd ACM International
Conference on Multimedia, pages 1245–1246. ACM,
2014.

[4] R. Collobert, K. Kavukcuoglu, and C. Farabet.
Torch7: A Matlab-like environment for machine
learning. In BigLearn, NIPS Workshop, number
EPFL-CONF-192376, 2011.

[5] J. T. Connor, R. D. Martin, and L. E. Atlas.
Recurrent neural networks and robust time series
prediction. IEEE Transactions on Neural Networks,
5(2):240–254, 1994.

[6] P. T. Costa and R. R. MacCrae. Revised NEO
personality inventory (NEO PI-R) and NEO
five-factor inventory (NEO FFI): Professional manual.
Psychological Assessment Resources, 1992.

[7] D. P. Crowne. Personality theory. Don Mills, Ont.:
Oxford University Press, 2007.

[8] R. Girshick. Fast R-CNN. In Proceedings of the IEEE
International Conference on Computer Vision, pages
1440–1448, 2015.

[9] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[10] J. Houvardas and E. Stamatatos. N-gram feature
selection for authorship identification. In International
Conference on Artificial Intelligence: Methodology,
Systems, and Applications, pages 77–86. Springer,
2006.

[11] N. Léonard, S. Waghmare, and Y. Wang. RNN:
Recurrent library for torch. arXiv preprint
arXiv:1511.07889, 2015.

[12] F. Mairesse, M. A. Walker, M. R. Mehl, and R. K.
Moore. Using linguistic cues for the automatic
recognition of personality in conversation and text.
Journal of Artificial Intelligence Research, 30:457–500,
2007.

[13] F. Rangel, F. González, F. Restrepo, M. Montes, and
P. Rosso. PAN at FIRE: Overview of the PR-SOCO
Track on Personality Recognition in SOurce COde. In
Working notes of FIRE 2016 - Forum for Information
Retrieval Evaluation, Kolkata, India, December 7-10,
2016, CEUR Workshop Proceedings. CEUR-WS.org,
2016.

[14] F. Rangel, P. Rosso, M. Potthast, B. Stein, and
W. Daelemans. Overview of the 3rd Author Profiling
Task at PAN 2015. In CLEF, 2015.

[15] E. H. E. SBG. Manual of the Eysenck personality
questionnaire, 1975.

[16] J. Staiano, B. Lepri, N. Aharony, F. Pianesi, N. Sebe,
and A. Pentland. Friends don’t lie: inferring

personality traits from social network structure. In
Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, pages 321–330. ACM, 2012.

[17] M. Telgarsky. Benefits of depth in neural networks.
CoRR, abs/1602.04485, 2016.

[18] C. Zhang and P. Zhang. Predicting gender from blog
posts. Technical report, Technical Report. University
of Massachusetts Amherst, USA, 2010.

