
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 192–205
Virtual Meeting, July 9, 2020. c©2020 Association for Computational Linguistics

192

Efficient EUD Parsing

Mathieu Dehouck Mark Anderson Carlos Gómez-Rodrı́guez
Universidade da Coruña, CITIC

FASTPARSE Lab, LyS Research Group,
Departamento de Ciencias de la Computación y Tecnologı́as de la Información

Campus Elviña, s/n, 15071 A Coruña, Spain
{mathieu.dehouck,m.anderson,carlos.gomez}@udc.es

Abstract
We present the system submission from the
FASTPARSE team for the EUD Shared Task
at IWPT 2020. We engaged with the task by
focusing on efficiency. For this we considered
training costs and inference efficiency. Our
models are a combination of distilled neural
dependency parsers and a rule-based system
that projects UD trees into EUD graphs. We
obtained an average ELAS of 74.04 for our of-
ficial submission, ranking 4th overall.

1 Introduction

Latterly, the environmental impact of AI and
NLP’s dependency on deep neural networks has
come under scrutiny (Schwartz et al., 2019;
Strubell et al., 2019). This has coincided with
a renewed push for efficiency in NLP so as to
make systems more easily used in different con-
texts, be it in hardware impaired conditions, large
web-scale applications, or a host of other consid-
erations (Strzyz et al., 2019; Clark et al., 2019; Vi-
lares et al., 2019; Junczys-Dowmunt et al., 2018).

Here we describe our contribution to the En-
hanced Universal Dependencies (EUD) Shared
Task at IWPT 2020 (Bouma et al., 2020), where
we have considered efficiency as well as bare ac-
curacy performance. We combine linguistics and
machine learning to develop efficient parsers, both
with respect to training and inference. First we
curtail the amount of training data we use, second
we try distillation to create smaller networks for
dependency parsers while maintaining accuracy,
and third we develop a rule-based system to cast
universal dependency (UD) trees as EUD graphs.

1.1 An aside on enhanced graphs
Certain syntactic phenomena, such as the prop-
agation of conjuncts or coreferences in relative
clauses, can only be handled implicitly by Uni-
versal Dependency (UD) trees resulting in opaque

relations or long paths between related content
words. EUD graphs is an enhanced representa-
tion which can handle these phenomena explicitly.
As nodes are not restricted to a single head, these
more complex relations can be more readily rep-
resented. While this results in a potentially much
more useful and informative representation, it also
makes for a more challenging task than vanilla UD
parsing.

2 Forest felling

Distillation introduces extra training overheads.
To mitigate this and to balance our pursuit of in-
ference efficiency with some semblance of train-
ing efficiency and considering recent results using
distillation suggest larger treebanks suffer greater
(Anderson and Gómez-Rodrı́guez, 2020), we de-
cided to set a limit to the size of training treebanks.

In order to minimise introducing compounding
variables that could affect training efficacy, we
renormalise the sampled treebanks to follow the
same tree length distribution of the original tree-
bank. Where more than one treebank exists for a
given language, we took a sample from each tree-
bank renormalised with respect to that treebank
and took a sample size so that the contribution
from each treebank would follow the same ratio
as the full data for that language.

We evaluated what limit to set by testing on 4
languages spanning 3 language families (Uralic,
Afro-Asiatic, and Indo-European). The only fam-
ily to appear in the shared task training data not
covered was Dravidian as the only example from
this language, Tamil, has too small a treebank
to have been useful for this analysis. We also
cover two branches of the Indo-European family.
Balto-Slavic is covered by Russian as the tree-
bank is rather large and uses the Cyrillic script.
Germanic is covered by Dutch, which we chose



193

Figure 1: LAS for different models for Arabic, Dutch,
Finnish, and Russian development treebanks.

as there are two treebanks which combine to a
sizeable number of trees and so would cover the
case of combining different treebanks. Finnish
was used to cover the Uralic family as we car-
ried this experiment out before the larger Estonian
treebank was made available and Arabic was used
for Afro-Asiatic. We used sample treebank sizes
of 1,000, 3,000, 6,075 (the number of trees in the
Arabic treebank), 12,217 (the number of trees in
the Finnish treebank), and 18,051 (the combined
number of trees in both Dutch treebanks). We cre-
ated 2 splits where possible (i.e. at 6,075 trees
Arabic isn’t a sample treebank) as a limited at-
tempt at experimental robustness.

We train a Biaffine parser using the hyperpa-
rameters of the original paper, shown in Table 6
in the Appendix (Dozat and Manning, 2017). We
then distill (as described in Section 3 and in Ap-
pendix A.1) these models to two different network
sizes, one which has 70% of the number of nodes
in both the BILSTM and MLP layers and one that
has 50%. Otherwise the structure of the network
is the same as the base model. The LAS aver-
aged over the splits for each sample and model are
shown in Figure 1 (similarly for UAS in Figure 8
in Appendix A.1). We are limited by what we can
extrapolate from the results for Arabic and Finnish
other than they appear to follow a similar trend to
Dutch and Russian. For the latter languages we
observe the performance levelling at larger tree-
bank sizes, which is neither remarkable nor unex-
pected, but also a widening between the perfor-
mance of the full and the distilled models.

As we are concerned with training efficiency,
we present the energy consumption for each model
type averaged over language and split in Figure 2.

Figure 2: Training energy consumption for different
models for different treebank sizes averaged over Ara-
bic, Dutch, Finnish, and Russian.

Figure 3: GPU inference speed for different models for
treebank 12k (except Arabic which uses its full tree-
bank of 6075 trees) averaged over 5 runs on the devel-
opment treebanks with batch size 256.

The amount of energy required to distill our mod-
els increases significantly with respect to treebank
size. However, distilling to a smaller model re-
quires less energy and, as can be seen in Figure 1,
the accuracy difference between the two distilled
models is nominal.

Figure 3 shows the inference speed (averaged
over splits and 5 runs) on GPU using a single CPU
core for each language using the models trained
with the 12,217 treebanks (for Arabic we use its
full treebank). We observe a sizeable increase in
speed over the baseline model for both distilled
models, but only a small difference between the
two distilled models.

From this, we decided to set an upper limit on
the treebank size for the main task to 13,121 (the
size of the Italian treebank) as this would require
the least amount of tampering and was close to
the second largest treebank size used here which
performed close to the largest. This meant tak-
ing a sample of the Czech, Dutch, Estonian, and
Polish treebanks and combining them as described
above. A sample was taken for the Russian tree-
bank. Some syntactic metrics are given in Table 7
in the Appendix which shows the different break-
down of the training data used for each of these
languages and how they are very similar to the full
data. Also, we opted to distill to 50% of the orig-
inal model size. For this analysis, and all subse-
quent analyses, the CPU used was an Intel Core i7-



194

7700 and the GPU an Nvidia GeForce GTX 1080.1

3 Boiling neural networks in the pot still

Neural network compression is not a new phe-
nomenon. For example, pruning has long been
shown to be an effective way to reduce parame-
ters with minimal impact on accuracy and also to
help generalisation (LeCun et al., 1990; Hagiwara,
1994; Wan et al., 2009; Han et al., 2015; See et al.,
2016). However, pruning isn’t overly useful for
creating efficient models as they leave networks
in irregularly sparse states. Other techniques ex-
ist that can recast networks into smaller more effi-
cient ones, but we focus on distillation. For a de-
tailed survey of current neural network compres-
sion techniques see Cheng et al. (2018).

Anderson and Gómez-Rodrı́guez (2020) used
teacher-student distillation to increase the infer-
ence efficiency while only losing marginal ac-
curacy for Universal Dependency (UD) parsing,
showing that distilled models outperform models
of the same structure and size trained normally.
Here we extend that work and use teacher-student
distillation to obtain efficient dependency parsers
as the basis of our enhanched-dependency parser
systems. A full description of our implementation
can be found in Anderson and Gómez-Rodrı́guez
(2020) but we also offer a condensed version in
Appendix A.1.

While we curtailed our training data, we se-
lected our models based on the performance on
the full development data for a given language
with gold sentence segmentation and tokenisation.
We used characters and words as input to our net-
work. The embeddings for both were randomly
initialised. The hyperparameters are the same
as used above. We also used early stopping to
limit unnecessary training time, stopping after 10
epochs without performance improvement.

At inference time we used UDPipe v2.5 mod-
els to predict everything except the parse (Straka
and Straková, 2019). When a combination of tree-
banks were being predicted, we used the model
which corresponded to the largest of the treebanks.

Table 1 shows the total time to train the full-
sized models and the distillation models for all
languages. Also, shown is the GPU energy con-
sumption. The costs for distillation include those
of the base models.

1Using Python 3.7.0, PyTorch 1.0.0, and CUDA 8.0.

Training costs

Total time GPU Energy (kJ)
Base 08h:42m:52.1s 3570.7
Distill 30h:07m:49.6s 9981.8
Rule-based 00h:00m:41.1s n/a

Table 1: Total training time and GPU energy consump-
tion for all treebanks.

Training costs for distillation are more than
three times that of the baseline which is hardly sur-
prising. The inference energy cost for all develop-
ment treebanks (37K trees) for the full model is
2.10 (0.09)kJ (average value over 5 runs for each
treebank) whereas the cost for distillation is 1.49
(0.03)kJ. Based on these measurements, we would
need to parse 390M sentences to offset the extra
cost of distilling models when running on GPU.

UAS LAS ELAS UAS LAS ELAS

Arabic Bulgarian
full 77.0 72.8 68.4 full 91.5 87.6 85.3
dist 76.5 72.3 67.9 dist 91.6 87.6 85.2

udpipe 72.8 68.1 63.0 udpipe 88.7 84.3 81.9
Czech Dutch

full 90.0 87.0 82.4 full 87.5 84.0 82.2
dist 89.0 85.3 80.7 dist 86.7 82.9 81.0

udpipe 87.6 84.0 78.4 udpipe 79.3 75.0 73.2
English Estonian

full 85.6 82.6 81.2 full 85.5 81.5 80.3
dist 84.4 81.2 79.8 dist 84.7 80.2 79.0

udpipe 81.0 77.6 76.3 udpipe 81.5 77.6 76.7
Finnish French

full 86.2 83.1 79.9 full 88.1 85.5 82.3
dist 85.1 81.3 78.0 dist 88.5 85.8 82.6

udpipe 80.4 76.8 73.7 udpipe 85.2 82.6 79.4
Italian Latvian

full 91.6 89.3 87.8 full 86.7 83.2 79.3
dist 90.3 87.8 85.9 dist 86.0 81.9 78.2

udpipe 88.5 85.9 84.1 udpipe 79.8 75.4 70.5
Lithuanian Polish

full 77.6 72.7 68.6 full 90.9 87.2 78.6
dist 78.0 73.0 68.9 dist 90.2 86.0 77.2

udpipe 72.3 64.6 60.9 udpipe 87.1 82.6 74.7
Russian Slovak

full 90.2 87.3 84.4 full 85.4 81.6 77.0
dist 88.9 85.5 82.5 dist 84.7 80.7 76.1

udpipe 87.4 84.4 81.5 udpipe 81.2 75.9 70.5
Swedish Tamil

full 85.2 81.4 78.9 full 59.8 52.6 51.2
dist 85.3 81.6 79.0 dist 64.0 56.9 55.5

udpipe 79.5 75.4 73.2 udpipe 60.7 54.1 53.0
Ukrainian Average

full 87.1 83.2 78.3 full 85.0 81.3 78.0
dist 86.6 82.5 77.5 dist 84.7 80.7 77.3

udpipe 81.6 76.9 72.5 udpipe 80.9 76.5 73.1

Table 2: Attachment scores for both UD trees and EUD
graphs for the development treebanks using different
dependency parsers: full baseline models (Full), dis-
tilled models (dist), and UDPipe v2.5 models (udpipe).



195

Late in the day we decided to validate the re-
sults of Anderson and Gómez-Rodrı́guez (2020),
namely that distilled models outperform models
trained normally of equivalent sizes. This high-
lighted that our distilled models used for our of-
ficial score had not converged. We trained new
distilled models and the results given here are for
these new models. Our official results using the
partially-trained models are in table 9 in the Ap-
pendix. All results, including training costs, in this
section are for the full-trained distilled models and
unless otherwise stated are using the combined de-
velopment treebanks for each language.

Table 8 in the Appendix shows the performance
for the equivalent-sized models trained normally
(small) and the distilled models (dist) with respect
to UAS and LAS. For the most part the normal
models outperform the distilled models. The main
differences between our work and that of Ander-
son and Gómez-Rodrı́guez (2020) is we do not use
pre-trained word embeddings nor POS tags as fea-
tures. So perhaps without this extra information
distillation is less effective. Also, dropout wasn’t
used during distillation in the original paper but
is here, so perhaps the values used here were too
punitive a regularisation. Although we use the
same hyperparameters as the original paper, the
average LAS for the small normally trained mod-
els is 0.4 points less than the large model.

We also evaluated the distilled models against
the full baseline model and UDPipe v2.5. These
results are shown in Table 2. The distilled mod-
els outperform the UDPipe models and are within
a point of both UAS and LAS to the full model.
The ELAS results for the rule-based system using
the predicted dependency trees from each of the-
ses systems are also shown. The performance on
ELAS generally follows the dependency scores.

Figure 4: Inference speed for distilled (dist) and full
baseline models on CPU (-cpu) and GPU (-gpu) for
each development treebank averaged over 5 runs using
one CPU core with batch size 256.

Inference speed (token/s)

CPU UD parser Full pipeline
Base 1194.1 (207.1) 879.0 (123.4)
Distill 2912.9 (535.1) 1569.9 (238.8)
UDPipe 3629.4 (584.0) 2220.2 (698.0)

GPU Base 17427.0 (1890.3) 2993.3 (680.2)
Distill 20321.6 (2348.9) 3073.7 (714.9)

Table 3: Inference speeds for dependency parsers and
the full EUD pipeline for different systems run on de-
velopment treebanks and averaged over 5 runs.

Figure 4 shows the inference speed using GPU
and CPU of the full baseline model and the dis-
tilled models for each language. These are ob-
tained by running the parser 5 times for each lan-
guage on the full development data and only using
one CPU core. The average speed (token/second)
increase was 2.44x (1.17x) on CPU (GPU).

Table 3 shows the inference speeds for the full
pipeline and the dependency parser. We also com-
pare UDPipe inference performance as it is a vi-
able candidate for an efficient parser. It is the
fastest of the systems compared here, but the full
pipeline which used it obtained an average ELAS
4.9 points less than full baseline model whereas
the distilled models are only 0.7 points less.

4 Unravelling trees with shrewd rules

Rule-based systems are intrinsically efficient with
respect to training time (barely a flash in the pan)
and inference time (there is practically none). So
we developed a simple rule-based system to en-
hance the existing dependency tree and reveal hid-
den dependencies in a cross-lingual setting using
as few language specific rules as possible. Beyond
the basic enhancement of the original dependen-
cies, there are four main phenomena that create
new dependencies: relative clauses, control, con-
junction and ellipsis. Since our pipeline does not
predict empty nodes, we decided to ignore ellipsis
in this system. To deal with each of these phe-
nomena, our algorithm needs to make a number of
passes over each sentence.

Pass one - relative clauses and controls: The
first pass of the algorithm iterates through each
word in the sentence and creates enhanced rela-
tions according to the type of the original depen-
dency. When necessary, it adds lemma and case
information. If the current word is a relative pro-
noun/adverb, its antecedent is found by following



196

its path to the root until an acl:relcl relation
is met. Then a ref edge is created between the
word and its antecedent and an edge between the
antecedent and the governor of the relativiser with
the same relation type as the original relation (if
the relative pronoun is the object of a verb then
the antecedent becomes the object of that verb).
If the word is the dependent of an xcomp rela-
tion, the algorithm looks for a subject amongst its
controlling predicate’s arguments. If a subject is
found, it creates an edge between the subject and
the current word of type nsubj(:xsubj) (or
csubj in the case of a clausal argument). If no
subject is available, the current word is stored in
a separate list for later processing. If the word is
the dependent of a conj relation, it too is stored
in a separate list along with all other conjuncts.
Whenever we encounter an argument of the type
subject, object or oblique, this information is kept
for resolving subjects of controlled predicates.

jestersjestersjestersjestersjestersjestersjestersjestersjestersjestersjestersjestersjestersjestersjestersjestersjesters whowhowhowhowhowhowhowhowhowhowhowhowhowhowhowhowho have ruined eveything

NSUBJ

AUX

ACL:RELCL

OBJ

REF

NSUBJ

Figure 5: Relative clause example. Pre-existing edges
in graph are in magenta and blue. The algorithm ob-
serves an acl:relcl relation (highlighted in blue)
which causes it to generate two new relations (high-
lighted in green). A ref relation is created between
who and its antecedent, jesters. Then a nsubj is prop-
agated from the head of who, ruined, to jesters.

Pass two - resolving conjunctions: We have
two general functions, one for dependent level
conjunctions and one for governor level conjunc-
tions, and a few special cases. The dependent level
function propagates the conjunction head’s origi-
nal relation to its conjuncts adapting it if neces-
sary, for example in coordinated nmod with dif-
ferent adposition or case. The governor level func-
tion propagates the conjunction head’s dependents
to its conjuncts in the absence of similar depen-
dents and according to morphological agreement.
We have a special function that handles subjects
of conjuncts because subjects are more diverse
than other syntactic functions. In UD at least
three relations can mark subjects, namely nsubj
for nominal subjects, csubj for clausal subjects

and expl used amongst other for syntactic sub-
jects in non prodrop languages (e.g. ”it rains”).
Subject edges also embed information about their
governor, notably information about the voice as
:pass when relevant. And, subjects can be ab-
sent altogether in prodrop languages, so we rely
on morphological information to decide to propa-
gate a given subject in these languages.

they angered the dwarves and the elves

NSUBJ DET

OBJ CC

DET

CONJ

OBJ

Figure 6: Conjunction example. Magenta and blue
edges are those existing in the graph after one pass.
During the first pass elves is stored as it is the de-
pendent of a conj relation (highlighted in blue). On
the second pass the obj relation of dwarves, the head
of this conj relation, propagates to elves generating a
new obj relation (highlighted in green) from angered.

Pass three and onwards - sweeping up controls:
Once conjunctions have been resolved and more
predicates have their arguments stored, the algo-
rithm iterates over controlled predicates that do
not have a subject after the first sentence traversal.
Several such iterations may be necessary since the
number of times a predicate may be coordinated
with a controlled verb itself already coordinated
to another controlled verb is not bounded. Like in
the sentence “Sam stood up and wanted to scream
and start running.” But in practice one iteration
solves the vast majority of missing subjects.

gnomes quailedquailedquailedquailedquailedquailedquailedquailedquailedquailedquailedquailedquailedquailedquailedquailedquailed and wanted to weepweepweepweepweepweepweepweepweepweepweepweepweepweepweepweepweep

NSUBJ CC

CONJ

MARK

XCOMP

NSUBJ

NSUBJ:XSUBJ

Figure 7: Control example. The edges of the graph
after two passes are in magenta and blue. During the
first pass weep is stored as it is a dependent of a xcomp
relation (highlighted in blue) but it cannot be resolved
until wanted is. wanted is resolved in the second pass
and an nsubj relation (shown in blue) is propagated
from the head, gnomes, of its conjunct, quailed. In the
third pass this is further propagated to weep generating
a nsubj:xsubj relation (highlighted in green).



197

4.1 Tuning the rules

A number of enhancements are relation and lan-
guage specific and some even lexically condi-
tioned such as control, and not all languages in-
clude every enhancement type. So the training
data is used to tune rules to a given language while
keeping the rule definitions as generic as possible.

The first type of information needed regards ad-
ditional lemmas and cases appearing in edges. For
each relation type, the frequency at which case is
being added to the relation is obtained. Similarly
for lemma, the algorithm counts the frequency of
relation types between a word and its dependent
used for lexicalisation since different relations are
augmented with different dependents (obl usu-
ally uses case where acl prefers mark). Fur-
thermore, for lemmas, when several dependents
have the same relation, it checks which is used for
lexicalisation. For conj though, it only checks if
there is anything at all since conj is tightly linked
to cc.

Each language is tested to see if it is prodrop by
comparing the number of root verbs with an overt
subject to the number of root verbs without an
overt subject. Whether :xsubj and :relsubj
should be added to subjects of controlled predi-
cates and relative clauses is also checked.

The algorithm then checks whether each rela-
tion propagates to its governor’s conjuncts and un-
der which conditions (the conditions are detailed
in Appendix A.2.1) and also if it propagates to
its own conjuncts. This is mostly relevant since
root usually does not propagate to conjuncts of
the main predicate, but in some treebanks it does.

Morphological features are used for detecting
relativisers. For each morphological feature, the
number of times it co-occurs with a ref en-
hanced relation is compared to the number of
times it co-occurs with another relation. While
not an arbitrary choice, it is one of the few cases
where an enhanced relation does not depend di-
rectly on information in the original tree but on
information external to the tree, so in theory we
could have chosen other clues such as the lemma
of the word instead. These pronouns and ad-
verbs are usually marked with PronType=Rel
or PronType=Int,Rel.

Finally, the controlling profile of controlling
predicates is learnt. The system discerns which
of the arguments is used as subject of controlled
verbs and in which conditions, meaning that we

do not count subjects in the absence of other argu-
ments since they become default.

4.2 Problems

While our rule-based system performs remarkably
well, as can be seen in Table 4, with the lowest
ELAS being 94.9 on the gold development data,
it is challenging to improve across languages si-
multaneously. Besides the expected ambiguity of
language, there are several issues which limit us,
some easy to fix, some more complicated, some
language specific, and some more general.

ELAS

Gold Full Dist UDPipe
Arabic 98.8 68.4 67.9 63.0
Bulgarian 98.6 85.3 85.2 81.9
Czech 97.9 82.4 80.7 78.4
Dutch 98.9 82.2 81.0 73.2
English 99.5 81.2 79.8 76.3
Estonian 99.2 80.3 79.0 76.7
Finnish 97.3 79.9 78.0 73.7
French 98.9 82.3 82.6 79.4
Italian 99.5 87.8 85.9 84.1
Latvian 95.7 79.3 78.2 70.5
Lithuanian 98.8 68.6 68.9 60.9
Polish 94.9 78.6 77.2 74.7
Russian 98.6 84.4 82.5 81.5
Slovak 98.8 77.0 76.1 70.5
Swedish 98.8 78.9 79.0 73.2
Tamil 99.3 51.2 55.5 53.0
Ukrainian 95.8 78.3 77.5 72.5
Average 98.2 78.0 77.3 73.1

Table 4: Enhanced labelled attachment score for EUD
graphs when using gold labelled dependency develop-
ment treebanks (gold), predicted treebanks with full
baseline models (Full), distilled models (Dist), and us-
ing UDPipe v2.5 models (UDPipe).

On the monolingual front, incomplete, erro-
neous and inconsistent annotations are the biggest
problems. Incomplete annotation can occur both
at the enhanced dependency and the lower level
of annotation. For example in Dutch Alpino,
we miss 515 ref relations and thus at least as
many enhanced relations from their antecedents,
representing two thirds of the missing dependen-
cies. The bulk of these missed references are rel-
ative/interrogative pronouns/adverbs that are not
annotated with an empty feature column. We
wanted to avoid too many language specific rules
and ignored them, leading to more than a thou-
sand missing edges. Likewise, in some languages
not all relativisers (typically interrogative adverbs)
are marked as references when they should be ac-
cording to UD guidelines.



198

Tokens Words Sentences UPOS XPOS UFeats AllTags Lemmas UAS LAS CLAS MLAS BLEX EULAS ELAS

Arabic 100.0 94.6 82.1 88.5 84.0 84.2 82.0 88.5 76.5 72.0 68.0 57.0 63.0 70.2 67.8
Bulgarian 99.9 99.9 94.2 97.6 94.3 95.4 93.8 94.6 92.1 88.5 84.5 78.0 77.5 87.3 86.4
Czech 99.9 99.9 93.2 97.8 90.9 90.8 89.7 97.4 88.0 84.1 80.9 70.4 78.6 82.0 79.6
Dutch 99.7 99.7 69.3 92.6 89.9 92.0 89.0 94.4 84.5 80.8 73.7 63.5 68.0 79.3 78.7
English 99.2 99.2 83.8 93.6 92.8 94.1 90.7 95.4 84.8 81.7 77.7 69.0 73.8 80.8 80.1
Estonian 99.7 99.7 90.0 95.0 96.2 92.8 91.0 90.4 82.7 78.2 75.5 67.3 66.2 77.7 76.8
Finnish 99.7 99.7 88.7 94.8 54.5 93.0 51.8 87.1 86.1 82.6 80.0 72.1 67.0 80.8 79.4
French 99.7 99.2 94.3 93.5 99.2 88.8 87.3 94.9 87.8 82.2 74.8 60.5 69.1 81.6 79.5
Italian 99.9 99.8 98.8 97.2 97.0 97.1 96.2 97.4 91.4 89.1 83.8 79.2 80.3 87.6 86.9
Latvian 99.3 99.3 98.7 93.5 84.3 89.5 83.9 92.7 86.0 81.8 78.7 65.9 72.4 79.3 77.8
Lithuanian 99.9 99.9 87.9 90.3 80.7 81.2 79.3 88.8 75.2 69.4 66.0 48.4 56.8 66.6 64.5
Polish 99.4 99.8 97.5 96.4 84.9 83.6 80.3 95.6 90.1 85.9 82.4 62.2 77.8 84.0 77.5
Russian 99.6 99.6 98.8 97.8 99.6 85.3 85.0 96.5 89.3 86.2 83.4 65.5 80.0 84.5 83.3
Slovak 100.0 100.0 85.3 92.9 77.1 80.3 76.7 86.6 85.6 81.5 78.0 56.8 64.8 79.8 76.7
Swedish 99.2 99.2 93.5 93.3 91.0 84.9 83.2 90.0 83.4 79.3 76.0 58.6 67.0 77.9 77.0
Tamil 99.2 94.5 97.5 81.3 76.3 80.5 75.6 84.1 62.5 53.0 48.8 39.9 43.7 53.0 51.7
Ukrainian 99.8 99.8 96.6 94.9 84.0 84.3 83.3 93.6 85.0 81.0 76.4 59.6 70.0 78.4 76.4
Average 99.7 99.1 91.2 93.6 86.9 88.1 83.5 92.2 84.2 79.8 75.8 63.2 69.2 78.3 76.5

Table 5: Test results evaluated through the official submission site and using our updated distilled model. Our
official submission results can be seen in Table 9 in the Appendix.

Erroneous annotations can be at lower levels of
annotation of the dependency tree, thus when ap-
plying rules according to these annotations, erro-
neous edges are created. For example in English
(EWT), there is the sentence “Let me know if this
is the appropriate steps that you would like to see,”
in which that which references steps is analysed as
the object of like (“you would like the steps to see”
vs. “you would like to see the steps”) thus the con-
trolling rule for like makes steps the subject of see
in place of you. Annotation errors can also happen
in the enhanced structure. In Russian, for exam-
ple, a number of nominal modifiers have diverg-
ing case information in the feature column and in
the enhanced relation one, often Case=Gen with
nmod:acc, so the predicted enhanced relation
nmod:gen conflicts with the actual annotation.

Latvian offers an example of inconsistent anno-
tation, nmod is extended with either the adposi-
tion’s lemma or the word’s case but never both and
the selection of lemma or case for any given word
is seemingly arbitrary. So it is impossible to devise
a rule to address this issue.

However, most of these problems are easily rec-
tified with a system such as ours by checking the
agreement of case and lemma information in en-
hanced relations assuming valid annotation of the
underlying data.

On the cross-lingual front, the biggest problem
is lack of consistency in annotation conventions.
Leaving incomplete annotation aside, there are a
number of clear divergences. The most striking
example is the way subjects of passive verbs and

more generally enhanced relations are handled in
French Sequoia. These relations receive an extra
(:)enh to differentiate them from canonical re-
lations directly taken from the tree, the presence
of the column depends mostly on the number of
columns in the relation type, if it is a simple rela-
tion then a column is used but when it is already a
sub-type with a column between the main type and
extra information then no column is added. Not
only is this unique to this treebank, but it is also
redundant since this information can be directly
retrieved by looking at the original tree. There
are also a number of more subtle inconsistencies.
For example, in languages that add lemma infor-
mation to conj relations, when the coordinating
conjunction is a symbol (& or /), most languages
just ignore them and keep the bare conj relation.
However, Swedish uses the special conj:sym re-
lation.

Beyond these issues, there remain genuine lin-
guistic difficulties. A difficulty common to all lan-
guages is the scope of conjunctions and whether
to propagate dependents amongst conjuncts or
not. This is particularly clear with adverbials and
obliques that modify verbs. Due to their broad se-
mantic range, adverbials can propagate from con-
junction heads to dependent conjuncts even if they
already have other adverbials, as long as they do
not conflict semantically. Currently in UD, there
is no hierarchy amongst dependents of a word, but
there could be a form of scope indexing to distin-
guish a word’s direct dependents from dependents
of the whole conjunction attached to its head.



199

Another difficulty is subject selection in pro-
drop languages. Fortunately, the prodrop lan-
guages in this shared task have personal and num-
ber agreement at least on finite verbs which helps
testing the compatibility of the overt subject of a
verb with its coordinated verbs or verbs in rela-
tive clauses that lack an overt subject. However,
there are prodrop languages that do not mark per-
sonal agreement on verbs and do not use relativis-
ers either (e.g. Japanese). In this case, finding the
semantic subject of verbs may be much more chal-
lenging.

5 Results and Discussion

Despite focusing on efficiency, our official sub-
mission obtained an average ELAS of 74.04 which
was the fourth best system (out of 9 full sub-
missions). Our improved score after training dis-
tilled models to convergence (or closer to conver-
gence) obtained an average score of 76.14. The
full breakdown of these results are shown in Table
5 and Table 9 in the Appendix.

Our system is competitive mainly by the grace
of our rule-based system which obtains an aver-
age 98.20 ELAS when used on the gold develop-
ment treebanks. And for the most part its per-
formance echoes the quality of the predicted de-
pendencies and tags used by the system as is seen
in Table 2. Having a rule-based system that can
perform so well on gold data means that improv-
ing the dependency predictions it is based on for
a full pipeline will almost always increase ELAS
scores. It also means it could be used to gener-
ate new data. Although this would be restricted
to generating data for pre-existing UD treebanks.
Furthermore, it could be used to highlight anno-
tation inconsistencies in a given treebank and be-
tween different treebanks for the same language.

We also demonstrated that smaller networks can
be competitive, even if in this context distillation
does not perform as well as previously observed
for UD parsing. And beyond that, we show that
it is possible to train competitive models with less
data and by doing so lowering the energy cost of
training parsers. One potentially interesting re-
sult is that Tamil performs noticeably better with
distillation than either the full baseline model or
the small model of the same size trained nor-
mally. It has the smallest training treebank out
of all the treebanks used in the shared task. The
other smaller treebanks also perform better with

distillation, e.g the next three smallest treebanks
French, Lithuanian, and Swedish all follow this
trend but the increase in performance is less pro-
nounced. Perhaps smaller treebanks benefit from
what is essentially ensemble training as it tempers
a network’s penchant for over-fitting.

Acknowledgments

This work has received funding from the Eu-
ropean Research Council (ERC), under the Eu-
ropean Union’s Horizon 2020 research and in-
novation programme (FASTPARSE, grant agree-
ment No 714150), from the ANSWER-ASAP
project (TIN2017-85160-C2-1-R) from MINECO,
and from Xunta de Galicia (ED431B 2017/01,
ED431G 2019/01).

References
Mark Anderson and Carlos Gómez-Rodrı́guez. 2020.

Distilling neural networks for greener and faster
dependency parsing. In Proceedings of the 16th
International Conference on Parsing Technologies
(IWPT 2020) (In press).

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Advances in Neural Information
Processing Systems, pages 2654–2662.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Cristian Bucilă, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In
Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining, pages 535–541. ACM.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2018.
Model compression and acceleration for deep neural
networks: The principles, progress, and challenges.
IEEE Signal Processing Magazine, 35(1):126–136.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D Manning, and Quoc Le. 2019.
BAM! Born-again multi-task networks for natural
language understanding. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5931–5937.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. Proceedings of the 5th International Confer-
ence on Learning Representations.



200

Masafumi Hagiwara. 1994. A simple and effective
method for removal of hidden units and weights.
Neurocomputing, 6(2):207–218.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, pages 1135–1143.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, et al. 2018.
Marian: Fast neural machine translation in C++. In
Proceedings of ACL 2018, System Demonstrations,
pages 116–121.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of
EMNLP, pages 1317–1327.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an ensemble of greedy dependency parsers
into one MST parser. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1744–1753, Austin, Texas.
Association for Computational Linguistics.

Yann LeCun, John S Denker, and Sara A Solla. 1990.
Optimal brain damage. In Advances in neural infor-
mation processing systems, pages 598–605.

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin,
and Ting Liu. 2018. Distilling knowledge for
search-based structured prediction. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 1393–1402, Melbourne, Australia. As-
sociation for Computational Linguistics.

Liang Lu, Michelle Guo, and Steve Renals. 2017.
Knowledge distillation for small-footprint highway
networks. In 2017 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 4820–4824. IEEE.

Roy Schwartz, Jesse Dodge, Noah A Smith, and
Oren Etzioni. 2019. Green AI. arXiv preprint
arXiv:1907.10597.

Abigail See, Minh-Thang Luong, and Christopher D
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 291–301.

Milan Straka and Jana Straková. 2019. Universal de-
pendencies 2.5 models for UDPipe (2019-12-06).
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Uni-
versity.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodrı́guez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of NAACL-HLT,
pages 717–723.

David Vilares, Mostafa Abdou, and Anders Søgaard.
2019. Better, faster, stronger sequence tagging con-
stituent parsers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3372–3383.

Weishui Wan, Shingo Mabu, Kaoru Shimada, Kotaro
Hirasawa, and Jinglu Hu. 2009. Enhancing the gen-
eralization ability of neural networks through con-
trolling the hidden layers. Applied Soft Computing,
9(1):404–414.

Seunghak Yu, Nilesh Kulkarni, Haejun Lee, and Jihie
Kim. 2018. On-device neural language model based
word prediction. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics:
System Demonstrations, pages 128–131.

A Appendix

A.1 Teacher-student distillation
Model distillation is the act of taking one or more
models and guiding the training of a single net-
work with these models. It was originally intro-
duced not as a means of creating more efficient
models, but as a way of ensemble training with
networks (Bucilă et al., 2006; Ba and Caruana,
2014; Hinton et al., 2015; Kuncoro et al., 2016).

Teacher-student distillation, the method used in
this work, has been successfully utilised in a num-
ber of NLP tasks ranging from machine transla-
tion, language modelling, exploring structured lin-
guistic space, and speech recognition (Kim and
Rush, 2016; Lu et al., 2017; Liu et al., 2018; Yu
et al., 2018).

In teacher-student distillation, the teacher
guides the training of another model, the student,
which in our experiments is smaller. The stu-
dent explicitly uses the information of the larger
model by comparing the probability distribution
of the respective model’s output layer. We use the
Kullback-Leibler divergence to obtain the loss be-
tween these two distributions:

LKL = −
∑
t∈b

∑
i

P (xi) log
P (xi)
Q(xi)

(1)

https://doi.org/10.18653/v1/D16-1180
https://doi.org/10.18653/v1/D16-1180
https://doi.org/10.18653/v1/D16-1180
https://doi.org/10.18653/v1/P18-1129
https://doi.org/10.18653/v1/P18-1129
http://hdl.handle.net/11234/1-3131
http://hdl.handle.net/11234/1-3131


201

where P is the probability distribution from the
teacher’s softmax layer, Q is the probability distri-
bution from the student’s, and xi is input vector to
the softmax corresponding to token wi of a given
tree t for all trees in batch b.

For our implementation there are two probabil-
ity distributions as we are using a Biaffine parser,
one for head predictions and one for label predic-
tions.2

The student is also trained directly on the gold
heads and labels using a categorical cross entropy
loss, e.g. for the loss on head predictions:

LCE = −
∑
t∈b

∑
i

log p(hi|xi) (2)

where hi is the true head position for token wi,
corresponding to the softmax layer input vector xi,
of tree t in batch b.

The total loss is therefore the combination of the
Kullback-Leibler loss between the probability dis-
tributions of the teacher and the student for both
head and label predictions with the cross entropy
loss between the student predictions and the gold
data:

L = LKL(Th, Sh) + LKL(Tlab, Slab)

+ LCE(h) + LCE(lab) (3)

where LCE(h) is the loss for the student’s pre-
dicted head positions, LCE(lab) is the loss for
the student’s predicted arc label, LKL(Th, Sh) is
the loss between the teacher’s probability distribu-
tion for arc predictions and that of the student, and
LKL(Tlab, Slab) is the loss between label distribu-
tions.

A.2 Details of dependency enhancements

In this section we give more details about the en-
hancement of dependency relations and about the
processing subtleties of relative clauses, controlled
predicates, and conjunctions.

Most of the original dependencies are kept in
the enhanced structure, but they can undergo a
number of cosmetic changes. In the simplest case,
the relation type t is just appended to the index h
of the word’s governor to give the relation h : t.
Sometimes, during the process the relation type is
slightly modified. In Estonian (EDT and EWT)
some complex relations such as compound:prt

2The PyTorch implementation used can be found at:
www.github.com/zysite/biaffine-parser

Figure 8: UAS for different models for Arabic, Dutch,
Finnish, and Russian development treebanks.

hyperparameter value
word embedding dimensions 100
char embedding dimensions 32
char BiLSTM dimensions 100
embedding dropout 0.33
BiLSTM dimensions 400 (200)
BiLSTM layers 3
arc MLP dimensions 500 (250)
label MLP dimensions 100 (50)
MLP layers 1
learning rate 0.2
dropout 0.33
momentum 0.9
L2 norm λ 0.9
annealing 0.75∧(t/5000)
ε 1×10−12

optimiser Adam
loss function cross entropy
epochs 100
min vocab freq. 2

Table 6: Hyperparameters for baseline models. The
values in parentheses show the values for the distilled
and small models used in the main analysis of the
shared task.

or csubj:cop are truncated and only the first
part is kept. Conversely, in French (Sequoia)
some relations receive extra information, such as
subjects of passives nsubj:pass that are aug-
mented with xoxobj stating they are the seman-
tic object of their head.

Some relations receive extra lexical and mor-
phological information. Conjuncts marked with
conj usually receive the lemma of the coordi-
nating conjunction (cc). Likewise, adverbial and
adjectival clauses (advcl and acl) receive the
lemma of the word (mark) that introduces them.
Nominal modifiers and obliques (nmod and obl)
can receive the lemma of the adposition that in-
troduces them (often marked with the case re-

www.github.com/zysite/biaffine-parser


202

original sample

trees mL mDD NP% trees mL mDD NP% 2s-KSL

Czech
-CAC 23478 20.1 3.7 2.5 3016 19.9 3.7 2.5 0.014
-FicTree 10160 13.2 3.6 3.8 1305 13.1 3.6 3.8 0.016
-PDT 68495 17.1 3.7 2.7 8800 17.1 3.7 2.6 0.007
-combined 102133 17.4 3.7 2.7 13121 17.4 3.7 2.7 0.007

Dutch
-Alpino 12264 15.2 4.0 4.5 8915 15.2 4.0 4.4 0.004
-LassySmall 5787 13.0 3.7 2.0 4206 13.0 3.7 1.9 0.007
-combined 18051 14.5 3.9 3.8 13121 14.5 3.9 3.7 0.004

Estonian
-EDT 24633 14.0 3.6 0.8 12552 14.1 3.6 0.8 0.010
-EWT 1116 15.4 3.8 1.5 569 15.4 3.8 1.6 0.027
-combined 25749 14.1 3.6 0.9 13121 14.1 3.6 0.8 0.009

Polish
-LFG 13774 7.6 2.8 0.3 5738 7.6 2.8 0.3 0.006
-PDB 17722 15.9 3.4 1.4 7383 15.9 3.4 1.5 0.008
-combined 31496 12.3 3.3 1.1 13121 12.3 3.3 1.2 0.003

Russian
-SynTagRus 48814 17.8 3.6 1.6 13121 17.8 3.6 1.6 0.004

Table 7: Analysis of renormalised treebank samples: 2s-KS is the two-sample Kolmogorov-Smirnov test com-
paring the sentence-length distributions of the original and the sample treebanks (where values close to 0 suggest
samples are not from different distributions, and values approaching 1 suggest otherwise); trees is the number
of trees; mL is the mean sentence length; mDD the mean dependency distance; and NP% is the percentage of
non-projective arcs. Where we use the combined sample (or just the sample for Russian-SynTagRus) for training.

UAS LAS UAS LAS

Arabic Bulgarian
small 76.9 72.5 small 91.6 87.6

dist 76.5 72.3 dist 91.6 87.6
Czech Dutch
small 89.5 86.0 small 87.2 83.3

dist 89.0 85.3 dist 86.7 82.9
English Estonian

small 85.0 81.9 small 85.2 80.9
dist 84.4 81.2 dist 84.7 80.2

Finnish French
small 85.8 82.2 small 88.1 85.5

dist 85.1 81.3 dist 88.5 85.8
Italian Latvian

small 91.3 89.0 small 86.3 82.4
dist 90.3 87.8 dist 86.0 81.9

Lithuanian Polish
small 76.7 71.5 small 90.5 86.4

dist 78.0 73.0 dist 90.2 86.0
Russian Slovak

small 89.5 86.3 small 85.6 81.7
dist 88.9 85.5 dist 84.7 80.7

Swedish Tamil
small 84.5 80.8 small 63.7 55.7

dist 85.3 81.6 dist 64.0 56.9
Ukrainian Average

small 86.8 82.6 small 85.0 80.9
dist 86.6 82.5 dist 84.7 80.7

Table 8: Comparison of attachment scores for the de-
velopment treebanks for distilled (dist) models and
models with the same parameters (small) trained nor-
mally.

lation). Furthermore nmod and obl can also
receive case information about the word itself.
When the introducing marker is not a word but a
fixed expression such as “as well as” then the long
lemma composed of the lemmas of each word in
the expression (marked by the fixed relation) is
used, for example conj:as well as.

Relative clauses The only relations from the
original tree that are not kept in the en-
hanced structure are those whose dependent is an
anaphoric pronoun or adverb used to introduce a
relative clause. Instead, the dependent (pronoun or
adverb) is linked to its antecedent by an edge la-
belled ref. A new edge is then added between the
original head of the reference and its antecedent of
the same type as the original relation in order to
show the argument structure of the clause. Thus,
relative clauses are the first phenomenon that cre-
ates edges that are not present in the original tree.
Their structure is however relatively simple since
they can at most create one extra edge and replace
one.

There are nonetheless two subtleties with rel-
ative clauses. First, in some languages, such as
English, relative pronouns are not necessary. In
these cases, while there are restrictions on the role
the antecedent can fill, we need to infer its actual
role from the sentence. Second, there may be sev-



203

Tokens Words Sentences UPOS XPOS UFeats AllTags Lemmas UAS LAS CLAS MLAS BLEX EULAS ELAS

Arabic 100.0 94.6 82.1 88.5 84.0 84.2 82.0 88.5 75.8 71.2 66.8 56.1 62.0 69.2 66.9
Bulgarian 99.9 99.9 94.2 97.6 94.3 95.4 93.8 94.6 91.1 87.0 82.3 75.8 75.5 85.8 84.9
Czech 99.9 99.9 93.2 97.8 90.9 90.8 89.7 97.4 86.2 81.8 78.1 67.9 75.8 79.6 77.2
Dutch 99.7 99.7 69.3 92.6 89.9 92.0 89.0 94.4 83.4 79.4 71.9 61.9 66.4 78.0 77.4
English 99.2 99.2 83.8 93.6 92.8 94.1 90.7 95.4 83.7 80.1 75.8 67.2 72.1 79.2 78.5
Estonian 99.7 99.7 90.0 95.0 96.2 92.8 91.0 90.4 80.7 75.5 72.7 64.6 63.8 75.0 74.1
Finnish 99.7 99.7 88.7 94.8 54.5 93.0 51.8 87.1 84.1 79.7 76.5 69.0 64.3 77.8 75.7
French 99.7 99.2 94.3 93.5 99.2 88.8 87.3 94.9 87.2 80.6 72.1 58.3 66.7 80.1 77.8
Italian 99.9 99.8 98.8 97.2 97.0 97.1 96.2 97.4 90.2 87.4 81.4 76.8 77.9 85.9 84.8
Latvian 99.3 99.3 98.7 93.5 84.3 89.5 83.9 92.7 84.4 79.7 76.1 63.6 70.0 77.2 75.6
Lithuanian 99.9 99.9 87.9 90.3 80.7 81.2 79.3 88.8 72.9 66.3 62.6 45.9 54.3 63.7 61.4
Polish 99.4 99.8 97.5 96.4 84.9 83.6 80.3 95.6 88.4 83.4 79.4 60.1 75.0 81.4 74.5
Russian 99.6 99.6 98.8 97.8 99.6 85.3 85.0 96.5 86.8 83.2 80.0 62.8 76.7 81.7 80.3
Slovak 100.0 100.0 85.3 92.9 77.1 80.3 76.7 86.6 83.2 78.3 73.9 53.8 61.6 76.5 73.5
Swedish 99.2 99.2 93.5 93.3 91.0 84.9 83.2 90.0 82.2 77.6 73.7 56.8 64.9 76.2 75.2
Tamil 99.2 94.5 97.5 81.3 76.3 80.5 75.6 84.1 59.6 48.8 43.6 35.5 39.6 48.1 47.0
Ukrainian 99.8 99.8 96.6 94.9 84.0 84.3 83.3 93.6 83.4 78.7 73.6 57.8 67.4 76.2 74.0
Average 99.7 99.1 91.2 93.6 86.9 88.1 83.5 92.2 82.5 77.6 73.0 60.8 66.7 76.0 74.0

Table 9: Full test results for our official submission using the shared task’s submission site for evaluation.

eral words that look like relativisers in a relative
clause even outside conjunction. Often, only one
of them is a leaf node, the others introducing fur-
ther embedded clauses. Only in Finnish (TDT) did
we find instances of multiple relative pronouns at-
taching to the same verb and each being marked as
the reference of another word in the sentence.

Control A second phenomenon that creates new
dependencies is control, where the subject of an
embedded clause is not overt and is provided by
one of its governor’s arguments. For example in
the English sentence “I want you to go,” the se-
mantic subject of the verb go is the object of the
main verb, namely you. In such a case, an addi-
tional relation is added to the structure to repre-
sent the dependency of the word you to the embed-
ded predicate go. These structures are marked by a
xcomp relation between the embedded predicate
and its governor in the original tree. The identity
of the new subject depends usually on the govern-
ing predicate and its argument structure. So it is
mostly a matter of knowing the governing profile
of each lexical item given their argument structure.
For example, the subject of a predicate embedded
in a want to clause is the object of the want to
clause if present, its subject otherwise. Control is
also quite simple since it has a limited span.

Conjunction The vast majority of new edges are
created by conjunctions and is much harder to han-
dle than the two previous phenomena. Contrary
to relative clauses and control, conjunction has
no direction in the sense that it can occur both

at the governor level and at the dependent level.
In “Mary and Sam bought strawberries,” the con-
junction “Mary and Sam” occurs at the dependent
level and both Mary and Sam are subject of the
verb bought. In “Mary bought strawberries and
ate them,” the conjunction is now at the governor
level and Mary is the subject of both bought and
ate. So unlike relative clauses where one merely
needs to find the relativiser’s antecedent higher up
in the tree, or control where one needs to look for
the controlled subject amongst the arguments of
the controlling predicate, conjunctions can have
repercussions both higher up and lower down in
the structure at the same time.

The easiest case for conjunction is when it oc-
curs at the dependent level. One just needs to
propagate the relation existing between the head
of the conjunction and its governor to the other
conjuncts. In the case of conjunction at the gov-
ernor level, things are more complicated. While
dependents don’t tend to propagate up a conjunc-
tion chain but only down, they can be blocked
by a number of reasons. For example in “Mary
bought and ate strawberries,” the object strawber-
ries should attach to bought in the tree and only
propagate down to ate. But in “Mary spoke and
ate strawberries,” strawberries should attach to
ate and not propagate up to spoke, even though
speak can also have direct objects. And in “Mary
bought strawberries and ate,” strawberries does
not propagate down to ate since it appears before
it in the sentence. However, the conditions under
which certain dependents do or do not propagate



204

to their governor’s conjuncts are both language
and relation specific. In a given language, objects
need not behave like subjects nor like determin-
ers or adverbials. Often if a relation slot (object,
subject, determiner) is already filled for a given
word, it will block the propagation of the same re-
lation from higher up in the conjunction chain, but
it need not always be the case, especially with ad-
verbials. But even an empty slot does not always
guarantee propagation, especially in case marking
and prodrop languages where morphological con-
sideration play a major role as well. So we need to
learn the propagation conditions for each relation
type on a per language basis.

In our system, we keep track of dependents of
conj relations during the first traversal of a sen-
tence and handle them in the second pass. The
main reason for not processing conjuncts as soon
as they arrive in the sentence is that some of their
dependents (objects, adjectives or adverbials) can
appear later and thus would require extra process-
ing. For example, in “Mary bought and ate straw-
berries,” the object of both verbs only appears
after the conjunct ate, so upon first seeing ate,
bought does not have any object to be propagated.

A.2.1 Conjunction propagating conditions
We use two sets of conditions in order to guide
the propagation of dependents to their governor’s
conjuncts. The first is about relation types already
attached to these conjuncts. Usually an object or
a subject does not attach to a verb that already has
these slots filled. So for each relation, we mea-
sure three frequencies. The frequency at which
it co-occurs with other types under its main gov-
ernor (in the tree), the frequency at which it co-
occurs with other types under its conjunct gover-
nors (in the enhanced structure) and the frequency
at which it does not co-occur with other types be-
cause it does not propagate to its governor’s con-
junct. Any relation with which it co-occurs under
its main governor cannot be blocking propagation.
Then if a relation is more often than not associated
with conjunct governors to which the current rela-
tion did not propagate, it is considered a blocking
relation. In practice this means that a subj does
not propagate to a conjunct of its governor that al-
ready has an expl, for example.

The second condition is based on matching
morphological information. For every relation and
morphological category (tense, case, aspect, and
so on), we measure how often the value of a cate-

gory agrees or disagrees between the governor and
its conjunct (of the same UPOS tag) when the rela-
tion propagates and when it does not. If a category
disagrees more often than not between conjuncts
which the relation did not propagate, then we as-
sume that the category needs to agree for that re-
lation.

A.3 Curious quibbles and questionable
jiggery-pokery

While being above 94.9 ELAS for all languages,
our rule-based system could still be improved to
better capture enhanced structures. There are three
main points for further improvement.

Upon reviewing the code for the rule-based sys-
tem, we realised that we catch arguments of rela-
tive clauses only in presence of a relativiser that
receives the ref relation. This means that we
miss a number of relations involved in relative
clauses. It remained unnoticed because of all the
languages in the shared task, most use relative pro-
nouns/adverbs to introduce relative clauses. In
fact the only language that does not have relative
pronouns, Tamil, is not yet annotated with rel-
ative clauses and it might not even be relevant.
Our methodology here is to look for an antecedent
when we have a relative pronoun, but we could
do the opposite and look for potential relative pro-
nouns when we have a relative clause. The lat-
ter should indeed be more language agnostic and
work even when there are no relativisers involved.

A second point of improvement has to do with
subject finding in controlled predicates. In our
current system, the controlling behaviour of each
controlling construction is gathered from the train-
ing data, and if we encounter an out of vocabulary
construction at prediction time the subject is used
by default. But further consideration showed that
the object might be a more sensible default option
when available. It would, however, be more in-
teresting to learn the default behaviour on a per
language basis.

Thirdly, due to the march of time, we hard-
coded a number of heuristic thresholds used to
fine-tune the system. For example, to see if a lan-
guage is prodrop, we compare the number of root
verbs with overt subjects with the number of root
verbs without a subject. If at least a third of root
verbs do not have an overt subject then that lan-
guage was considered prodrop. This is clearly not
satisfying since this ratio can greatly vary from



205

language to language and from genre to genre.
Furthermore, some languages may not be gener-
ally prodrop, but ommit syntactic subjects in im-
personal constructions, such as Hebrew, or be pro-
drop only for certain tenses.


