
ar
X

iv
:1

20
6.

67
35

v1
 [

cs
.C

L]
 2

8
Ju

n
20

12

Elimination of Spurious Ambiguity
in Transition-Based Dependency Parsing

Shay B. Cohen
Department of Computer Science

Columbia University, USA
scohen@cs.columbia.edu

Carlos Gómez-Rodrı́guez
Departamento de Computación
Universidade da Coruña, Spain

cgomezr@udc.es

Giorgio Satta
Department of Information Engineering

University of Padua, Italy
satta@dei.unipd.it

Abstract

We present a novel technique to remove spurious ambiguity from transition systems for dependency parsing. Our
technique chooses a canonical sequence of transition operations (computation) for a given dependency tree. Our
technique can be applied to a large class of bottom-up transition systems, including for instance Nivre [2004] and
Attardi [2006].

1 Introduction

In parsing, spurious ambiguity refers to ambiguity in a grammar that occurs because several derivations exist for an
identical syntactic analysis. When the grammar is enrichedwith probabilities, the existence of spurious ambiguity im-
plies that the statistical model is defined overderivations, a more fine-grained version of the actual syntactic structures
of interest. The probability of a syntactic structure then becomes the marginalized probability over all derivations that
map to that syntactic structure.

Spurious ambiguity can exist in various grammatical modelssuch as combinatory categorial grammars [Steedman,
2001], tree adjoining grammars [Joshi et al., 1975], data-oriented parsing [Bod, 1992] and transition-based dependency
parsing [Nivre, 2005].

While models with spurious ambiguity are statistically more expressive than models without spurious ambiguity,1

an obstacle exists in the need to marginalize out derivations in order to compute the total probability of a syntactic
structure, which is necessary for training and decoding with such models. For many models with spurious ambiguity,
it is in fact provably NP-hard to do such marginalization [Sima’an, 1996].

Various heuristics exist to sidestep the need for marginalization. For example, during decoding, one can find the
highest-scoring derivation instead of the highest-scoring structure. Under the assumption that most of the probability
mass of a given syntactic structure is concentrated on a single derivation, this alternative decoding can be successful.
However, this assumption often fails when the probability mass is evenly divided for one syntactic structure but
concentrated on a single derivation for another. Even when marginalization can be done efficiently, the likelihood
of observed data often becomes non-convex, which is undesirable for training the model because of the local optima
problem. For these reasons, it is preferable in most cases toeliminate spurious ambiguity.

In this paper, we focus on eliminating spurious ambiguity that exists in transition-based dependency parsing. Am-
biguity arises because several sequences of shift and reduce operations (which assemble a derivation) could yield

1By this we mean that there are distributions over syntactic structures which can be obtained using models with spurious ambiguity but can not
be obtained using models without spurious ambiguity.

1

http://arxiv.org/abs/1206.6735v1

identical dependency trees. The transition-based parsingliterature has implicitly tackled the issue of spurious am-
biguity by defining anoracle which, after receiving a dependency tree as input, outputs aunique derivation for that
tree based on a canonical ordering of the transition operations. This oracle is then used on the training data (pairs of
sentences and dependency trees), yielding new training data (pairs of sentences and shift-reduce derivations) to train
multi-class classifiers that decide at each transition stepwhich operation to take [Nivre et al., 2004].

Rather than eliminating spurious ambiguity from the model,this heuristic creates a bias through training to prefer
certain derivations for a given dependency tree when doing decoding. In addition, as we discuss in§5, some of the ex-
isting oracles for supervised dependency parsing are basedon incomplete heuristics (which are often undocumented).

We present a more principled approach to eliminate spuriousambiguity in transition-based dependency parsing.
We first define a wide class of bottom-up transition systems, which includes the arc-standard transition system [Nivre,
2008] as well as the transition system from Attardi [2006]. One could also define a transition-based parser using a
strategy which is a hybrid between the arc-standard strategy and the easy-first strategy from Goldberg and Elhadad
[2010], in which a set of shift actions would need to be taken before a reduction decision is made affecting elements
at some deeper position on the stack: this decision can depend on the “easiness” of the reduction. Such a parser can
be easily encapsulated into our framework.

We then provide a general technique to enrich the transitions of these systems in order to remove spurious ambi-
guity while maintaining the completeness of the enriched system with respect to the original. Each tree is associated
with a single derivation, which is a sequence of shift and reduce operations such that reduce operations are performed
as soon as possible, and conflicts between several reductions are resolved by first attaching dependents that are closer
to the current focus point of the parser (top of the stack). This is coherent with psycholinguistic models postulating
that humans tend to process local attachments first [Gibson,2000].

Our approach eliminates ambiguity from a declarative transition system. However, it is extensible to a decoding
algorithm as well. The transition systems we introduce can be made probabilistic in a manner similar to the one
that appears in Cohen et al. [2011]. Then, a dynamic programming algorithm for these probabilistic systems can
be derived so that one can identify the highest scoring derivation and compute the expectations of features in the
model [Kuhlmann et al., 2011, Cohen et al., 2011]. Our removal of spurious ambiguity is efficient: the dynamic
programming algorithm which is based on the transformed transition system has the same asymptotic complexity as a
dynamic programming algorithm for the original transitionsystem.

Our original motivation was to construct a probabilistic model for transition-based dependency parsing, such that
a unique (canonical) derivation exists for each dependencytree. This avoids the computational complexity involved in
marginalizing derivations. Removal of spurious ambiguityin such a case has to be done at the level of the transition
system and not at the level of a tabular method simulating thesystem or at the level of the resulting parse forest:
removing undesired derivations from the chart does not tellus how to set transition probabilities in the original system
in such a way that the probability mass of each dependency tree is allocated to a single canonical derivation.

The rest of this paper is organized as follows. We provide an overview of transition-based dependency parsing
in §2. We then describe the main details of the spurious ambiguity removal technique in§3. We provide proofs and
formal analysis in§4. We apply our technique to the parser from Attardi [2006] and run some experiments in§5. We
describe other applications of our technique in§6, and we conclude with an open problem in§7.

2 Transition-Based Dependency Parsing

In this section we briefly introduce the basic definitions fortransition-based dependency parsing; we refer the reader to
Nivre [2008] for a more detailed presentation. We also definethe class of transition-based parsers which is investigated
in this paper.

2.1 General Transition Systems

LetΣ be an input alphabet and letw = a1 · · · an, n ≥ 1, be the input string withai ∈ Σ for eachi with 1 ≤ i ≤ n. A
dependency treefor w is a directed treeG = (Vw , A) whereVw = {0, 1, . . . , n} is the set of nodes andA ⊆ Vw×Vw

is a set of arcs. Each node encodes the position of a token inw, with 0 being a dummy node used as an artificial root,

2

and each arc encodes a dependency relation between two tokens. We writei → j to denote a directed arc(i, j) ∈ A,
where nodei is the head and nodej is the dependent.

A transition system for dependency parsing is a tupleS = (C, T, I, Ct), whereC is a set of configurations,
defined below,T is a finite set oftransitions, which are partial functionst:C ⇀ C, I is a total initialization function
mapping each input string to a unique initial configuration,andCt ⊆ C is a set of terminal configurations.

A configuration is defined relative to input stringw, and is a triple(σ, β,A). Symbolsσ andβ are disjoint lists of
nodes fromVw, calledstack and inputbuffer , respectively, andA ⊆ Vw × Vw is a set of arcs. Ift is a transition and
c1, c2 are configurations such thatt(c1) = c2, we writec1 ⊢t c2, or simplyc1 ⊢ c2 if t is understood from the context.

We denote the stack with its topmost element to the right and the buffer with its first element to the left. We indicate
concatenation in the stack and buffer by a vertical bar. For example, fori ∈ Vw, σ|i denotes some stack with topmost
elementi andi|β denotes some buffer with first elementi. For1 ≤ i ≤ n, βi denotes the buffer[i, i + 1, . . . , n]; for
i > n, βi denotes the empty buffer[].

A computationof S is a sequenceγ = c0, . . . , cm,m ≥ 1, of configurations such that, for everyi with 1 ≤ i ≤ m,
ci−1 ⊢ti ci for someti ∈ T . In other words, each configuration in a computation is obtained as the value of the
preceding configuration under some transition. A computation can be uniquely specified by its initial configurationc0
and the sequencet1, . . . , tm of its transitions. Thus we will later denoteγ in the form(c0; t1, . . . , tm).

2.2 Spurious Ambiguity

A computationγ = c0, . . . , cm is calledcompletewheneverc0 = I(w) for some input stringw, andcm ∈ Ct. For a
complete computationγ we denote asD(γ) the unique dependency tree consisting of nodesVw and all arcs in the final
configurationcm. We say that a transition system hasspurious ambiguity if, for some pair of complete computations
γ andγ′ with γ 6= γ′, we haveD(γ) = D(γ′).

Informally, the existence of spurious ambiguity implies that there are at least two computations that derive the
same dependency tree. Spurious ambiguity exists in varioustransition systems, such as those in Nivre [2004] and
Attardi [2006].

Example 1. The well-known arc-standard transition system by Nivre [2004] can be defined as follows: its initializa-
tion function isI(a1 · · ·an) = ([0], [1 · · ·n], ∅), its set of terminal configurations isCt = ([0], [], A), and it has the
following transitions:

shift : (σ, i|β,A) ⊢ (σ|i, β, A)

la : (σ|i|j, β, A) ⊢ (σ|j, β, A ∪ {j → i})

ra : (σ|i|j|, β, A) ⊢ (σ|i, β, A ∪ {i→ j})

The two following complete computations for a stringw = a1a2a3 produce the same tree with arcs{0→ 2, 2→ 1, 2→ 3}:

(i) (I(w); shift, shift, la, shift, ra, ra);

(ii) (I(w); shift, shift, shift, ra, la, ra).

Therefore, this transition system has spurious ambiguity,caused by the fact that it allows words (in the example,a2)
to choose whether to collect a left or a right dependent first.

We remark that while in the case of the arc-standard model spurious ambiguity is restricted to a certain set of
permutationsover sequences of operations, i.e., all derivations of a given syntactic tree consist of the same transitions
in some permutation, this does not hold in the case of non-projective models.

2.3 Bottom-Up Shift-Reduce Transition Systems

Many of the transition systems for dependency parsing that have been proposed in the literature adopt a bottom-up
strategy, meaning that they construct dependency trees starting from the leaves and finishing with the root, by always
collecting all the dependents of a given node before assigning it as a dependent of another node. This includes for

3

instance the already mentioned arc-standard parser, and the non-projective parser of Attardi [2006]. These parsers
tend to present spurious ambiguity because, as in Example 1,the left and right dependents of a given node can be
collected in different orders. This is in contrast with parsers derived from the arc-eager model [Nivre, 2003] which are
not bottom-up and instead impose a unique left-to-right order in which arcs must be constructed.

Some bottom-up transition systems use reduce transitions that affect the buffer, but they can be cast in an alternative
form in which all reductions involve only elements from the stack. This is done by considering the first element of
the buffer as the topmost stack symbol, as discussed by Cohenet al. [2011]; in this way reductions might take place
between stack elements placed at positions deeper than the topmost one. The following definition captures the general
form of such models.

Definition A transition system isbottom-up shift-reduceif its initialization function isI(a1 · · · an) = ([0], [1 · · ·n], ∅),
its set of terminal configurations isCt = ([0], [], A), and its set of transitions consists of the following:

(i) a shift transitionsh of the form(σ, i|β,A) ⊢ (σ|i, β, A);

(ii) a set of left arc transitionslap←q with p > q ≥ 1, each of the form

(σ|ip|ip−1| · · · |i1, β, A) ⊢ (σ|ip−1| · · · |i1, β, A ∪ {iq → ip});

(iii) a set of right arc transitionsrap→q with p > q ≥ 1, each of the form

(σ|ip|ip−1| · · · |i1, β, A) ⊢ (σ|ip| · · · |iq+1|iq−1| · · · |i1, β, A ∪ {ip → iq}).

Transitions in (ii) and (iii) above are calledreductions. Thedegreeof reductionslap←q andrap→q is defined asp− q

and is always positive. Thedepth of reductionslap←q andrap→q corresponds to the indexp. The degree of a transition
systemS, written deg(S), is the maximum degree among all its reductions. Analogously, the depth of a transition
systemS, writtendepth(S), is the maximum depth among all its reductions.

The next definition introduces a condition that allows us to remove spurious ambiguity from bottom-up shift-reduce
parsers. Informally, the condition requires that the existence in the system of a reduction of some type involving stack
positionsp andq, p > q, always implies the existence in the system of reductions ofthe same type involving stack
positionsp′ andq′ with p′ < p andq′ ≤ q. We need some additional notation. Letµ(lap←q) be a set of transitions
including lap−1←q if p > q + 1, lap−1←q−1 if q > 1, and no other transition. Similarly,µ(rap→q) includesrap−1→q

if p > q + 1, rap−1→q−1 if q > 1, and no other transition.

Definition Let S be a bottom-up shift-reduce transition system with set of transitionsT . S is monotonic if for each
t ∈ T we haveµ(t) ⊆ T .

Example 2. The transition-based parser of Attardi [2006] can be written as the bottom-up shift-reduce system with
transitionssh, lap←1 and rap→1 for everyp with 2 ≤ p ≤ d, d = depth(S). The system with depth3, as used by
Kuhlmann and Nivre [2010], Cohen et al. [2011], has transitionssh, la2←1, ra2→1, la3←1 andra3→1.

These systems are monotonic for every value ofd, since for a transitionlap←1, we have thatµ(lap←1) = {lap−1←1}
(if p > 2) or ∅ (otherwise), and thereforeµ(lap←1) is included inT . The same also holds forµ(rap→1).

The monotonicity property is crucial for the main result of this paper: if a bottom-up shift-reduce transition system
is monotonic, we can systematically obtain an equivalent system without spurious ambiguity, as described in the next
section.

3 Removal of Spurious Ambiguity

Let S be a bottom-up shift-reduce transition system that is monotonic. We show how we can systematically obtain a
new transition systemS′ without spurious ambiguity that is equivalent toS, that is,S′ parses the same set of trees as
S. In essence, this is the main result of this paper, which can be formally stated as follows:

4

Theorem 3. Any transition systemS which is bottom-up shift-reduce and monotonic, can always be converted into
anequivalenttransition systemS′ that does not have spurious ambiguity, such that:

(i) for each complete computationγ′ of S′ onw there is a complete computationγ of S such thatD(γ) = D(γ′);
and

(ii) for each complete computationγ of S onw there is a complete computationγ′ of S′ such thatD(γ) = D(γ′).

Next, we describe howS′ is created, and give full formal proofs of this theorem in§4.

3.1 Stack Symbols

Recall that inS each stack symbol is an integeri representing the word occurrenceai in the input string. Each stack
symbol inS′ is obtained by annotatingi with the following Boolean features:

• a featurei.stop indicating whether, in the current analysis, the wordai has collected all of its dependents (T) or
it is still seeking some of them (F);

• for eachk with 1 ≤ k ≤ deg(S), a featurei.leftk indicating that a left reduction is allowed (T) or forbidden (F)
between symboli and the symbolk positions belowi in the stack;

• for eachk with 1 ≤ k ≤ deg(S), a featurei.rightk indicating that a right reduction is allowed (T) or forbidden
(F) between symboli and the symbolk positions belowi in the stack.

We now introduce some predicates that will be used later to define the new transition systemS′. Let i andj be
stack symbols ofS′. The predicatebu(i, j) ≡ ¬i.stop ∧ j.stop indicates whether a bottom-up link from nodei to
nodej is admissible in the current configuration, i.e., whether nodei can accept a dependent and nodej has already
collected all of its dependents. Assume thati andj are located at stack positionsp andq, respectively, withp > q.
Then the predicates2

left(i, j; p, q) ≡ j.left(p−q) ∧ bu(j, i) ∧ lap←q ∈ T,

right(i, j; p, q) ≡ j.right(p−q) ∧ bu(i, j) ∧ rap→q ∈ T

indicate that reductionslap←q andrap→q, respectively, areavailable in the current configuration, i.e., these reductions
can be performed by the parser. As we will see later, the notion of available reduction plays a crucial role in the
construction ofS′.

3.2 Transitions

The basic idea underlying the construction ofS′ is to perform reductions as early as they become available ina
computation, according to the notion of available reduction that we have just introduced. This is implemented as
follows.

We define apriority relation among transitions inT such that, in choosing between several reductions that are
compatible with some dependency tree, we give highest priority to the reduction with its dependent closest to the top
of the stack. This reduction is necessarily unique, given that in a dependency tree each dependent has a unique head.
The shift transitions are always assigned the lowest priority.

Note that the priority relation can be seen as a partial orderbetween reductions, but the set of reductions that are
compatible with a given tree is totally ordered, due to the restriction that a node cannot have more than one head.

In the new transition systemS′ we simulateS as follows. Given a configurationc′1 of S′ representing a configura-
tion c1 of S, we consider the setTc1 of all transitions fromS that are available atc1. We nondeterministically choose a
transitiont ∈ Tc1 and simulate it onc′1 underS′, moving into a new configurationc′2. Most important, inc′2 we set the

2Here we are overloading symbolsleft andright, with related meanings: it will always be clear from the context whether these symbols refer
to features or else to predicates.

5

feature of the stack symbols in such a way that all transitions inTc1 that had higher priority thant are now blocked,
meaning that no computation spanning fromc′2 will ever be able to apply such transitions. We can now specify our
construction.

For a stack symboli of S, we writei[T] to denote the stack symbol ofS′ such thati.ϕ = T for every featureϕ.
For a featureϕ and a valuev, we write j = i[ϕ ← v] if j.ϕ = v andj.ϕ′ = i.ϕ′ for every other featureϕ′. We
generalize this notation to a set of featuresF , and writej = i[ϕ ← v | ϕ ∈ F] if j.ϕ = v for eachϕ ∈ F and
j.ϕ = i.ϕ for eachϕ 6∈ F . Finally, as a shorthand, we writei[ϕ ← v | ϕ ∈ F ;ϕ′ ← v′ | ϕ′ ∈ F ′] in place of
(i[ϕ← v | ϕ ∈ F])[ϕ′ ← v′ | ϕ′ ∈ F ′].

The systemS′ obtained by removing spurious ambiguity fromS has a set of transitionsT ′ including all and only
the transitions reported below, whereδ is depth(S):

sh
s :(σ|iδ|iδ−1| . . . |i1, i|β,A) ⊢

(σ|i′δ|i
′

δ−1| . . . |i
′

1|i
′, β, A)

where we leti′ = i[T], and for everyu with 1 ≤ u ≤ δ we let

i′u = iu[leftk ← F | left(iu+k, iu;u+ k, u);

rightk ← F | right(iu+k, iu;u+ k, u)].

Transitionshs simulates a shift ofS. The superscripts means that the new symboli′ added to the stack has the
featurestop set toT, that is, we (nondeterministically) guess thati′ is now ready for bottom-up reduction. Since
the shift transition has always the lowest priority inS, shs blocks any reduction that was available in the antecedent
configuration, by setting the features of eachi′q, as indicated above.

We also add toT ′ a transitionshs defined exactly asshs but with the only difference that we leti′ = (i[T])[stop←
F], that is, we guess that nodei′ is still seeking dependents in the current analysis.

For eachrap→q in T , we add toT ′

rasp→q :(σ|ip|ip−1| . . . |i1, β, A) ⊢

(σ|i′p| . . . |i
′

q+1|i
′

q−1| . . . |i
′

1, β, A ∪ {ip → iq})

which can only be applied under the preconditionright(ip, iq; p, q). Here we leti′p = ip[stop ← T], and for everyu
with 1 ≤ u ≤ d we let

i′u = iu[leftk ← F | u+ k < q ∧ left(iu+k, iu;u+ k, u);

rightk ← F | u < q ∧ right(iu+k, iu;u+ k, u)].

As for the shift transition, we also add toT ′ a transitionrasp→q defined exactly asrasp→q but withi′p = ip[stop← F].
Reductionsrasp→q andrasp→q block every reductiont allowable in the antecedent configuration that has priorityhigher
than the reductionp→ q, that is, with a dependent at a position closer to the top of the stack thanq.

Similarly to the above, for eachlap←q in T we add toT ′

lasp←q :(σ|ip|ip−1| . . . |i1, β, A) ⊢

(σ|i′p−1| . . . |i
′

1, β, A ∪ {iq → ip})

which can only be applied under the preconditionleft(ip, iq; p, q). Here we leti′q = iq[stop ← T], and for everyu
with 1 ≤ u ≤ d we let

i′u = iu[leftk ← F | u+ k < p ∧ left(iu+k, iu;u+ k, u);

rightk ← F | u < p ∧ right(iu+k, iu;u+ k, u)].

We also add toT ′ a transitionlasp←q defined exactly aslasp←q but with i′q = iq[stop← F].
The initialization function and final configuration set ofS′ are like those ofS, but we have to specify feature values

for the stack symbol corresponding to the dummy root node0: all its features will beF in the initial configuration, and
in final configurations it must have theleftk andrightk features set toF but stop set toT.

6

Example 4. If we apply the transformation defined in this section to remove spurious ambiguity from the arc-standard
transition system of Example 1, we obtain a systemS′ where the only valid computation for the tree with arcs
{0→ 2, 2→ 1, 2→ 3} is

(I(w); shs, shs, las2←1, sh
s, ras2→1, ra

s
2→1),

which builds the arcs in the same order as the computation (i)of Example 1.
It is easy to check that an alternate computation building the arcs in the order of the computation (ii) does not

exist inS′. Such a computation would have to start with the transitionsshs, shs, shs, ras2→1 (the need to use thes or s
variant of each configuration is uniquely determined by whether nodes have pending dependents or not).

However, after applying these transitions the parser will be in a configuration([0, 1, 2], [], ∅) with:

0.stop = F, 0.left1 = F, 0.right1 = F,

1.stop = T, 1.left1 = T, 1.right1 = F,

2.stop = F, 2.left1 = F, 2.right1 = T.

At such configuration, the feature value2.left1 = F blocks the left reduction creating the arc2→ 1. This is so because
theshs transition that moved the node3 to the stack set this value toF, blocking this left reduction since it could have
been executed at that point with higher priority thanshs.

4 Formal Properties and Proofs

We now proceed to prove that the described transformation for the removal of spurious ambiguity is correct (i.e. prove
Theorem 3). To do so, we first show that transition systemsS andS′ defined as in§3 are equivalent, i.e., they assign
the same set of trees to any input string. Afterward, we show thatS′ has no spurious ambiguity, i.e., different complete
computations ofS′ will always produce different dependency trees.

4.1 Equivalence of Unambiguous System to Original System

Let S andS′ be defined as in Section 3, with associated transition setsT andT ′, respectively. To show thatS andS′

are equivalent, we need to prove that for every input stringw

(i) for each complete computationγ′ of S′ onw there is a complete computationγ of S such thatD(γ) = D(γ′);
and

(ii) for each complete computationγ of S onw there is a complete computationγ′ of S′ such thatD(γ) = D(γ′).

The proof of (i) is rather straightforward. We show a mappingfrom the complete computations ofS′ to the
complete computations ofS that preserves the associated trees. We define a homomorphism τ from T ′ to T by letting

τ(lasp←q) = τ(lasp←q) = lap←q,

τ(rasp→q) = τ(rasp→q) = rap→q,

τ(shs) = τ(shs) = sh,

and extend it to (complete) computations (recall that we represent a computation by its initial configuration and its
sequence of transitions) by lettingτ((c0; t1, . . . , tm)) = (c0; τ(t1), . . . , τ(tm)).

It is not difficult to see that ifγ is complete, thenτ(γ) is also complete. Furthermore, this mapping preserves trees,
i.e., for any computationγ of S′ we haveD(γ) = D(τ(γ)), because transitionst ∈ T ′ andτ(t) ∈ T create the same
arc, if any. This concludes the proof of (i).

To prove statement (ii) above, letγ = c0, . . . , cm = (c0; t1, . . . , tm) be a complete computation ofS for an input
stringw, and letAγ be the set of arcs inD(γ). We show that we can always find a computationγ′ of S′ such that

7

D(γ′) = D(γ). To do this, we introduce below the notion of canonical computations ofS. Then we proceed in two
steps: first we transformγ into a canonical computationγf of S equivalent toγ, and then we transformγf into an
equivalent computationγ′ of S′.

Consider a configurationck, 0 ≤ k ≤ m, appearing inγ. LetRk,γ be the set of reductions ofS that can be applied
to ck, and that are compatible withD(γ), i.e., these reductions construct an arc(h → d) ∈ Aγ . Hereah is the head
word andad is the dependent word, both fromw.

Assume thatRk,γ 6= ∅, and lettρ be the reduction inRk,γ with the highest priority. This means thattρ is the
reduction inRk,γ with dependent noded placed at the position closest to the top in the stack associated with ck or,
equivalently, the reduction with the largest value of indexd in w. Note that there cannot be more than one such
reduction, due to the single-head constraint inD(γ).

We say thatck is a troublesomeconfiguration inγ if tk+1 6= tρ. This means thattk+1 is either a shift transition,
or else a reduction inRk,γ that, when applied tock, creates a dependency linkh′ → d′ with d′ < d, i.e., a reduction
with lower priority thantρ, since noded′ will be placed at a deeper position than noded in the stack associated with
ck.

We say that a computation ofS is in canonical form if it does not contain any troublesome configuration. This
means that, at each configurationck of a canonical computation, the reduction inRk,γ with the highest priority is
taken, in case setRk,γ is not empty. We now show that for every computationγ of S there exists an equivalent
canonical computationγf of S. We show how to eliminate the leftmost troublesome configuration in γ; iteration of
this process will always produce a computation where no configurations are troublesome.

Let ck be the leftmost troublesome configuration inγ. We show that we can build a computationγk of S which is
equivalent toγ, and such that its firstk configurations are not troublesome. The transition sequence tk+1, . . . , tm can
be written in the form

tk+1, tk+2, . . . , tj−1, t
′

ρ, tj+1, . . . , tm

wheret′ρ is a reduction creating the same linkh → d that should have been created by the reductiontρ ∈ Rk,γ with
the highest priority. Note that reductiont′ρ must take place at somecj in γ with j > k+ 1, becauseh→ d is inD(γ),
and this link cannot be present in the arc set associated withck (if it were, the reductiontρ could not be available atck
becaused would not be in the stack at that configuration).

The sequencetk+1, . . . , tm in γ can then be replaced (generating the same tree) with

tρ, τd(tk+1), . . . , τd(tj−1), tj+1, . . . , tm

whereτd(t) represents the transition that creates the same arc in a stack where the nodej has been removed ast
would create in a stack where the nodej is present. Formally, for a transition applied at a configuration c with stack
σ|ip| . . . |iq| . . . |i1, we defineτd(sh) = sh and

τd(rap→q) =

rap→q if ip > d andiq > d,

rap−1→q if ip < d andiq > d,

rap−1→q−1 if ip < d andiq < d.

τd(lap←q) =

lap←q if ip > d andiq > d,

lap−1←q if ip < d andiq > d,

lap−1←q−1 if ip < d andiq < d.

Note that, sinceS is monotonic, the existence of a transitiont implies the existence ofτd(t).
The computationsγk andγ produce the same tree. Also, inγk the firstk configurations are not troublesome, since

applying the reductiontρ at ck makesck not troublesome, and by construction the configurations to the left ofck in
γk are not troublesome.

By iteratively applying the above process, we eventually obtain a computationγf of S such thatD(γf) = D(γ).
It then remains to show that we can obtain a computationγ′ of S′ with the same associated dependency tree asγf .

Let γf = (c0; t1, . . . , tm) and assume that for eachj, 1 ≤ j ≤ m, transitiontj in γf applies to configuration
cj−1 = (σ|ip| · · · |iq| · · · |i1, i0|β,A). The computationγ′ is obtained asγ′ = (c0; t

′

1, . . . , t
′

m), where for eachj, t′j is
specified as follows.

8

• If tj = rap→q, thent′j is rasp→q if Aγ \ (A ∪ {(ip, iq)}) contains a dependency link of the form(ip, u) for some
u, andt′j is rasp→q otherwise.

• If tj = lap←q, thent′j is lasp←q if Aγ \ (A ∪ {(iq, ip)}) contains a dependency link of the form(iq, u) for some
u, andt′j is lasp←q otherwise.

• If tj = sh, thent′j is shs if Aγ \ A contains a dependency link of the form(i0, u) for someu, andt′j is shs

otherwise.

It is not difficult to see thatγ′ is a valid computation ofS′ for w. This follows from the fact that the transitionst′j
above satisfy thebu(i, j) predicates inS′, and the fact that inγf reductions are applied in accordance to the priority
relation. We also observe that ifγf is complete thenγ′ is complete as well. Finally, the fact thatD(γ′) = D(γf)
follows immediately from the above mapping from transitions tj to transitionst′j . This concludes the proof of (ii) and
thus the proof of the equivalence ofS andS′.

4.2 Non-ambiguity of the Transition System

To prove that our transformed systemS′ has no spurious ambiguity, we need to show that different complete compu-
tations ofS′ for w always produce different trees, i.e., ifγ1 6= γ2 are complete computations ofS′ for input stringw,
thenD(γ1) 6= D(γ2).

To do so we writeγ1 asαc1β1 andγ2 asαc2β2, with α the common prefix among both computations, andc1, c2
configurations such thatc1 6= c2. Note thatα cannot be empty, since both computations must at least have the initial
configurationI(w) in common. We callc0 the last configuration inα, andt1, t2 the transitions that producec1, c2
(respectively) fromc0. We distinguish four cases below.
Case 1:t1 andt2 are transitions that differ only in thestop feature of some new nodeu in the configuration they
produce. As an example, we havet1 = lasp←q andt2 = lasp←q, which differ in thestop feature of nodeu = q. Without
loss of generality, we assumeu.stop = T in c1, andu.stop = F in c2. Let c0 = (σ, β,A). ThenD(γ2) must contain
at least one arc originating fromu that is not present inA, while D(γ1) cannot contain any arc originating fromu
that is not already inA, becauseu.stop = T prevents the addition of dependents ofu aftert1 is executed. Therefore,
D(γ1) 6= D(γ2).
Case 2:t1 andt2 are reduce transitions with different head nodes but the same dependent nodeu. In thisD(γ1) 6=
D(γ2) follows from the single-head constraint, since the nodeu will be assigned different heads inγ1 andγ2, respec-
tively.
Case 3:t1 andt2 are reduce transitions involving different dependent nodes. Suppose thatt1 creates the arch1 → d1
andt2 creates the arch2 → d2. Without loss of generality, we assume thatd1 > d2, i.e., t1 has higher priority than
t2. ThenD(γ1) contains the arch1 → d1, butD(γ2) cannot contain this arc, since the system’s features block its
construction after the application of the transitiont2 at configurationc0.
Case 4:t1 is a reduce transition andt2 is a shift transition. The same reasoning of Case 3 applies: the arch1 → d1
created byt1 cannot appear inD(γ2), because the system’s features block its construction after the shift transitiont2
is applied. This concludes the proof thatS′ does not have spurious ambiguity.

4.3 Complexity

Let S be a bottom-up monotonic transition system, and letdeg(S) = δ. The construction in§3 adds2δ + 1 binary
features to each stack symbol ofS. This results in22·δ+1 new symbols inS′ for each stack symbol ofS. While for
projective dependency parsing we haveδ = 1, degree larger than one is needed in non-projective parsing. However, it
has been observed by Attardi [2006] that most of the non-projective trees in the CoNLL data can be parsed withδ = 2
or 3. This means that, in practical cases, the blow-up of stack symbols by our construction can be considered a small
constant.

To discuss a concrete application, consider the non-projective systemS of [Attardi, 2006], also shown in Exam-
ple 2, restricted toδ = 2, which is still heavily affected by spurious ambiguity. We have applied the construction in
§3 toS with some ad-hoc optimization of the features for that system, resulting in a new systemS′ with a blow-up of

9

Language Size Attardi This paper
Arabic 1,460 27 2
Bulgarian 12,823 47 36
Czech 72,703 1,334 602
Danish 5,190 179 159
Dutch 13,349 1,448 1,018
German 39,216 2,140 1,538
Japanese 17,044 121 45
Portuguese 9,071 295 203
Slovene 1,534 48 27
Spanish 3,306 11 10
Swedish 11,042 197 105
Turkish 4,997 208 102

Table 1: Coverage of Attardi’s oracle versus the coverage ofour oracle for various treebanks from the CoNLL 2006
data sets [Buchholz and Marsi, 2006]. “Size” denotes the number of sentences in the treebank (we used the training
portion only), “Attardi” denotes the number of sentences that Attardi’s oracle could not parse and “this paper” denotes
the number of parse trees that our oracle could not parse.

stack symbols of2δ+1 = 8. This means that we can apply toS′ the inside/outside algorithm presented in Cohen et al.
[2011], working in timeO(|w|7) for an input stringw, with an extra hidden constant of8.

5 Experiments

As mentioned earlier, transition-based dependency parsing uses an oracle to convert training data which consists of
pairs of sentences and dependency trees to pairs of sentences with shift-reduce sequences, in order to sidestep the issue
of spurious ambiguity. The new training data is then used to train multi-class classifiers. In several cases, oracles are
based on heuristics and are incomplete. The oracle that is provided in the DeSR dependency parsing package,3 which
is based on the parser from Attardi [2006], is an example for such incomplete heuristics.

We compared the coverage of Attardi’s oracle, restricted totransitions of degree at most2, to the oracle of an
equivalent transition system without spurious ambiguity.4 Our findings are given in Table 1. As theoretically guaran-
teed, there were no cases where Attardi’s parser recognizeda tree using transitions of degree 2, and our oracle did not
recognize it. The reverse, however, holds quite often.

6 Discussion

We note that monotonic bottom-up shift-reduce transition systems can be made probabilistic and generative, in a
manner similar to Cohen et al. [2011]. The issue with spurious ambiguity is especially crucial with generative models
in the unsupervised setting, when using algorithms such as the expectation-maximization (EM) algorithm. Cohen et al.
[2011] describe an EM algorithm for the system from Attardi [2006], which can be extended to any monotonic bottom-
up transition system. The EM algorithm they describe can be further extended to monotonic bottom-up transition
systems after removal of spurious ambiguity (as we describein this paper), making these systems readily available for
transition-based unsupervised learning for dependency parsing.

3http://desr.sourceforge.net/.
4Note that the algorithm implemented in the latest version ofDeSR, which we used for these experiments, differs from the description provided

in Attardi [2006] and Example 2 in thatla3←1 andra3→1 transitions push a node from the stack back to the buffer after reducing. This does not
affect our method to remove spurious ambiguity, which is correct both for the version described in Attardi [2006] and forthe latest implementation
of Attardi’s parser.

10

http://desr.sourceforge.net/

7 Conclusion

We provided a principled treatment to the issue of spurious ambiguity in transition-based dependency parsing. We
defined a large class of transition systems, which we call monotonic bottom-up shift-reduce transition systems, that
cover existing systems such as the arc-standard parser of Nivre [2008] and the non-projective parser of Attardi [2006],
as well as systems in which reductions affect elements at positions in the stack deeper than the topmost element
[Goldberg and Elhadad, 2010]. We then showed how to eliminate spurious ambiguity from these systems. Our tech-
nique has applications for unsupervised and supervised dependency parsing. The transition model that we present can
be used as a substitute for models such as the dependency model with valence that have long been used for dependency
grammar induction [Klein and Manning, 2004, Cohen and Smith, 2010, Spitkovsky et al., 2010].

In this paper we have discovered some sufficient conditions under which spurious ambiguity can be removed
from bottom-up dependency transition systems, which we hope are as “tight” as possible. However, our technique
does not work for all dependency transition systems, and it remains an open problem to show whether removal of
spurious ambiguity can be carried out in the general case. There might as well be dependency parsing strategies for
which removal of spurious ambiguity is not only difficult, but simply impossible. A similar scenario is observed, for
instance, for structural ambiguity in context-free grammars, where some context-free languages can only be generated
using ambiguous context-free grammars; see for instance Hopcroft et al. [2006].

References

Giuseppe Attardi. Experiments with a multilanguage non-projective dependency parser. InProceedings of the Tenth
Conference on Computational Natural Language Learning (CoNLL), pages 166–170, 2006.

Rens Bod. A computational model of language performance: Data oriented parsing. InProceedings of COLING,
1992.

Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on multilingual dependency parsing. InProceedings of the
Tenth Conference on Computational Natural Language Learning (CoNLL), pages 149–164, 2006.

Shay B. Cohen and Noah A. Smith. Covariance in unsupervised learning of probabilistic grammars.Journal of
Machine Learning Research, 11:3017–3051, 2010.

Shay B. Cohen, Carlos Gómez-Rodrı́guez, and Giorgio Satta. Exact inference for generative probabilistic non-
projective dependency parsing. InConference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1234–1245, 2011.

Edward Gibson. The dependency locality theory: A distance-based theory of linguistic complexity. InImage, lan-
guage, brain: Papers from the first mind articulation project symposium, pages 95–126, 2000.

Yoav Goldberg and Michael Elhadad. An efficient algorithm for easy-first non-directional dependency parsing. In
Human Language Technologies: The 2010 Annual Conference ofthe North American Chapter of the Association
for Computational Linguistics, pages 742–750, Los Angeles, California, June 2010. Association for Computational
Linguistics. URLhttp://www.aclweb.org/anthology/N10-1115.

John E. Hopcroft, R. Motwani, and Jeffery D. Ullman.Introduction to Automata Theory, Languages, and Computation.
Addison Wesley; 3rd edition, 2006.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree Adjunct Grammars.Journal of Computer and System
Sciences, 10(2):136–163, 1975.

Dan Klein and Christopher D. Manning. Corpus-based induction of syntactic structure: Models of dependency and
constituency. InProceedings of the 42th Annual Meeting of the Association ofComputational Linguistics (ACL),
2004.

11

http://www.aclweb.org/anthology/N10-1115

Marco Kuhlmann and Joakim Nivre. Transition-based techniques for non-projective dependency parsing.Northern
European Journal of Language Technology, 2(1):1–19, 2010.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Giorgio Satta. Dynamic programming algorithms for transition-
based dependency parsers. InProceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics (ACL), Portland, Oregon, USA, 2011.

Joakim Nivre. An efficient algorithm for projective dependency parsing. InProceedings of the Eighth International
Workshop on Parsing Technologies (IWPT), pages 149–160, Nancy, France, 2003.

Joakim Nivre. Incrementality in deterministic dependencyparsing. InWorkshop on Incremental Parsing: Bringing
Engineering and Cognition Together, pages 50–57, Barcelona, Spain, 2004.

Joakim Nivre. Dependency grammar and dependency parsing. Technical report, Växjö University, 2005.

Joakim Nivre. Algorithms for deterministic incremental dependency parsing.Computational Linguistics, 34(4):513–
553, 2008.

Joakim Nivre, Johan Hall, and Jens Nilsson. Memory-based dependency parsing. InProceedings of the 8th Con-
ference on Computational Natural Language Learning (CoNLL-2004), pages 49–56, Morristown, NJ, USA, 2004.
Association for Computational Linguistics.

Khalil Sima’an. Computational complexity of probabilistic disambiguation by means of tree-grammars. InProceed-
ings of COLING, pages 1175–1180, 1996.

Valentin Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. From baby steps to leapfrog: How “less is more” in
unsupervised dependency parsing. InHuman Language Technologies: The 2010 Annual Conference ofthe North
American Chapter of the Association for Computational Linguistics (NAACL), pages 751–759, 2010.

Mark Steedman.The Syntactic Process. MIT Press, 2001.

12

	1 Introduction
	2 Transition-Based Dependency Parsing
	2.1 General Transition Systems
	2.2 Spurious Ambiguity
	2.3 Bottom-Up Shift-Reduce Transition Systems

	3 Removal of Spurious Ambiguity
	3.1 Stack Symbols
	3.2 Transitions

	4 Formal Properties and Proofs
	4.1 Equivalence of Unambiguous System to Original System
	4.2 Non-ambiguity of the Transition System
	4.3 Complexity

	5 Experiments
	6 Discussion
	7 Conclusion

