arXiv:1206.6735v1 [cs.CL] 28 Jun 2012

Elimination of Spurious Ambiguity
in Transition-Based Dependency Parsing

Shay B. Cohen Carlos Gomez-Rodriguez
Department of Computer Science Departamento de Computacion
Columbia University, USA Universidade da Coruia, Spain
scohen@s. col unbi a. edu cgonezr @dc. es

Giorgio Satta
Department of Information Engineering
University of Padua, Italy
satta@lei . unipd.it

Abstract

We present a novel technique to remove spurious ambiguity fransition systems for dependency parsing. Our
technique chooses a canonical sequence of transition tapergcomputation) for a given dependency tree. Our
technique can be applied to a large class of bottom-up tiansystems, including for instan04] and
[2006].

1 Introduction

In parsing, spurious ambiguity refers to ambiguity in a gnaan that occurs because several derivations exist for an
identical syntactic analysis. When the grammar is enriehidprobabilities, the existence of spurious ambiguity im
plies that the statistical model is defined oderivations a more fine-grained version of the actual syntactic strestu
of interest. The probability of a syntactic structure thecdmes the marginalized probability over all derivatidra t
map to that syntactic structure.

Spurious ambiguity can exist in various grammatical mosdet$ as combinatory categorial grammman,

[2001], tree adjoining grammatfs [Joshi et 975], daiented parsingd [Bdd, 1992] and transition-based deperyden

parsing mmﬂ.

While models with spurious ambiguity are statistically mexpressive than models without spurious ambi@.lity,
an obstacle exists in the need to marginalize out derivatiororder to compute the total probability of a syntactic
structure, which is necessary for training and decoding wsitch models. For many models with spurious ambiguity,
it is in fact provably NP-hard to do such marginalizati 11996].

Various heuristics exist to sidestep the need for margiaibn. For example, during decoding, one can find the
highest-scoring derivation instead of the highest-sepstnucture. Under the assumption that most of the probgabili
mass of a given syntactic structure is concentrated on #esitlggivation, this alternative decoding can be successful
However, this assumption often fails when the probabilitgssis evenly divided for one syntactic structure but
concentrated on a single derivation for another. Even whargimalization can be done efficiently, the likelihood
of observed data often becomes non-convex, which is uraddsifor training the model because of the local optima
problem. For these reasons, it is preferable in most casgsrimate spurious ambiguity.

In this paper, we focus on eliminating spurious ambiguigt #xists in transition-based dependency parsing. Am-
biguity arises because several sequences of shift andaesherations (which assemble a derivation) could yield

1By this we mean that there are distributions over syntagticires which can be obtained using models with spuriausiguity but can not
be obtained using models without spurious ambiguity.

http://arxiv.org/abs/1206.6735v1

identical dependency trees. The transition-based palisargture has implicitly tackled the issue of spurious am-
biguity by defining aroracle which, after receiving a dependency tree as input, outputsigue derivation for that
tree based on a canonical ordering of the transition operatiThis oracle is then used on the training data (pairs of
sentences and dependency trees), yielding new trainireg(dairs of sentences and shift-reduce derivations) to trai
multi-class classifiers that decide at each transitionst@ph operation to tak04].

Rather than eliminating spurious ambiguity from the motte§ heuristic creates a bias through training to prefer
certain derivations for a given dependency tree when do@egding. In addition, as we discussifs, some of the ex-
isting oracles for supervised dependency parsing are lmasgdtomplete heuristics (which are often undocumented).

We present a more principled approach to eliminate spudouisiguity in transition-based dependency parsing.
We first define a wide class of bottom-up transition systenmsghvincludes the arc-standard transition sysivre,
M] as well as the transition system from Atta 006heCould also define a transition-based parser using a
strategy which is a hybrid between the arc-standard styaiad the easy-first strategy fram Goldberg and Elhadad

], in which a set of shift actions would need to be takefote a reduction decision is made affecting elements
at some deeper position on the stack: this decision can depethe “easiness” of the reduction. Such a parser can
be easily encapsulated into our framework.

We then provide a general technique to enrich the transitidithese systems in order to remove spurious ambi-
guity while maintaining the completeness of the enricheslesy with respect to the original. Each tree is associated
with a single derivation, which is a sequence of shift andioedbperations such that reduce operations are performed
as soon as possible, and conflicts between several redsietiomesolved by first attaching dependents that are closer
to the current focus point of the parser (top of the stack)is Thcoherent with psycholinguistic models postulating
that humans tend to process local attachmentsi@].

Our approach eliminates ambiguity from a declarative itenmssystem. However, it is extensible to a decoding
algorithm as well. The transition systems we introduce canmade probabilistic in a manner similar to the one
that appears in_Cohen et al. [2011]. Then, a dynamic progiamaigorithm for these probabilistic systems can
be derived so that one can identify the highest scoring dioim and compute the expectations of features in the
model [Kuhlmann et al., 2011, Cohen et al., 2011]. Our rerho¥apurious ambiguity is efficient: the dynamic
programming algorithm which is based on the transformetsttan system has the same asymptotic complexity as a
dynamic programming algorithm for the original transitgystem.

Our original motivation was to construct a probabilisticaabfor transition-based dependency parsing, such that
a unigue (canonical) derivation exists for each dependerey This avoids the computational complexity involved in
marginalizing derivations. Removal of spurious ambigiitguch a case has to be done at the level of the transition
system and not at the level of a tabular method simulatingsytséeem or at the level of the resulting parse forest:
removing undesired derivations from the chart does notiteliow to set transition probabilities in the original syste
in such a way that the probability mass of each dependeneydralocated to a single canonical derivation.

The rest of this paper is organized as follows. We providearmew of transition-based dependency parsing
in §2. We then describe the main details of the spurious amlyigeihoval technique i§3. We provide proofs and
formal analysis irffd. We apply our technique to the parser fOOGj am some experiments ifo. We
describe other applications of our techniqué@hand we conclude with an open problenifih

2 Transition-Based Dependency Parsing

In this section we briefly introduce the basic definitionstfansition-based dependency parsing; we refer the reader t
Nivre M] for amore detailed presentation. We also defieeclass of transition-based parsers which is investigate
in this paper.

2.1 General Transition Systems

Let) be an input alphabet and let= a; - - - a,,, n > 1, be the input string witl,; € X' for eachi with 1 < i <n. A
dependency tredor w is a directed tre€& = (V,,, A) whereV,, = {0,1,...,n} is the set of nodes andl C V,, x V,
is a set of arcs. Each node encodes the position of a tokenwith 0 being a dummy node used as an artificial root,

and each arc encodes a dependency relation between twestdkenvritei — j to denote a directed af¢, j) € A,
where nodé is the head and nodgis the dependent.

A transition system for dependency parsing is a tuple= (C, T, I,C;), whereC'is a set of configurations,
defined below]" is a finite set otransitions, which are partial functions C' — C, I is a total initialization function
mapping each input string to a unique initial configuratemdC; C C' is a set of terminal configurations.

A configuration is defined relative to input string, and is a triplg o, 3, A). Symbolss andj are disjoint lists of
nodes froml/,,, calledstack and inputbuffer, respectively, andl C V,, x V,, is a set of arcs. If is a transition and
¢1, co are configurations such thét;) = co, we writecy k¢ co, Or simplyc; b ¢ if ¢ is understood from the context.

We denote the stack with its topmost element to the right hatuffer with its first element to the left. We indicate
concatenation in the stack and buffer by a vertical bar. kample, fori € V,,, o|i denotes some stack with topmost

element and:|5 denotes some buffer with first elementror1 < i < n, 8; denotes the buffei,i + 1, ..., n]; for
i > n, ; denotes the empty buffélr
A computationof S'is a sequence = ¢y, . .., ¢y, m > 1, of configurations such that, for everwith 1 < i < m,

ci—1 i, ¢; for somet; € T. In other words, each configuration in a computation is oletdias the value of the
preceding configuration under some transition. A compomatan be uniquely specified by its initial configuratign
and the sequence, . . ., t,,, of its transitions. Thus we will later denotein the form(co; t1, ..., tm).

2.2 Spurious Ambiguity

A computationy = ¢y, . . ., ¢, iS calledcompletewhenever, = I(w) for some input stringu, ande,,, € C;. For a
complete computatiofn we denote a® () the unique dependency tree consisting of nddeand all arcs in the final
configuratiorr,,,. We say that a transition system rsggmurious ambiguity if, for some pair of complete computations
~ and~’ with v # ~', we haveD(v) = D(v').

Informally, the existence of spurious ambiguity implieattthere are at least two computations that derive the
same dependency tree. Spurious ambiguity exists in vatransition systems, such as thosi@004] and

2006).

Example 1. The well-known arc-standard transition systen@li@&:an be defined as follows: its initializa-
tion function is/(a; - - -a,) = ([0],[1---n],0), its set of terminal configurations §; = ([0],[], 4), and it has the
following transitions:

shift : (0,i|8, A) - (oli, 8, A)
la : (alilj, B, A) ¥ (o5, 8, AU{j = i})
ra: (aliljl, 8, A) = (ali, B, AU{i — j})
The two following complete computations for a string= a; a2as produce the same tree with arf§ — 2,2 — 1,2 — 3}:
() (I(w);shift, shift, la, shift, ra, ra);
(i) (I(w);shift, shift, shift, ra, la, ra).

Therefore, this transition system has spurious ambigo@ysed by the fact that it allows words (in the exampig,
to choose whether to collect a left or a right dependent first.

We remark that while in the case of the arc-standard modeimmiambiguity is restricted to a certain set of
permutationver sequences of operations, i.e., all derivations of argéyntactic tree consist of the same transitions
in some permutation, this does not hold in the case of nofegtive models.

2.3 Bottom-Up Shift-Reduce Transition Systems

Many of the transition systems for dependency parsing the¢ fbeen proposed in the literature adopt a bottom-up
strategy, meaning that they construct dependency tregmgtirom the leaves and finishing with the root, by always
collecting all the dependents of a given node before aggigihias a dependent of another node. This includes for

instance the already mentioned arc-standard parser, andboti-projective parser mm%} These parsers
tend to present spurious ambiguity because, as in Exdmhples 1eft and right dependents of a given node can be
collected in different orders. This is in contrast with assderived from the arc-eager mo rre, 2003] which are
not bottom-up and instead impose a unique left-to-righeéomd which arcs must be constructed.

Some bottom-up transition systems use reduce transitianatfect the buffer, but they can be cast in an alternative
form in which all reductions involve only elements from thack. This is done by considering the first element of
the buffer as the topmost stack symbol, as discussed by Galen[2011]; in this way reductions might take place
between stack elements placed at positions deeper thaopim®st one. The following definition captures the general
form of such models.

Definition A transition system ibottom-up shift-reduceif its initialization functionis/(a; - - - a,,) = ([0],[1- - - n], D),
its set of terminal configurations &, = ([0], [], A), and its set of transitions consists of the following:

(i) ashift transitiorsh of the form(o, |8, A) & (o], 8, A);

(i) aset of left arc transitionk,,., with p > ¢ > 1, each of the form
(U|ip|ip—1| T |i17ﬁ7 A) (U|ip—l| T |i1, B, AU {iq - ip})?
(iii) a set of right arc transitions,_,, with p > ¢ > 1, each of the form
(U|Z.p|ip71| e lin, B, A) (U|ip| T |Z.q+1|iqfl| e li, B, AU {ip - iq})-

Transitions in (ii) and (i) above are calledductions. Thedegreeof reductionda,._, andra,_,, is defined ap — ¢
and is always positive. Ttaepth of reductionda,._, andra,_,, corresponds to the index The degree of a transition
systemsS, written deg(.5), is the maximum degree among all its reductions. Analogotisé depth of a transition
systemsS, writtendepth(.S), is the maximum depth among all its reductions.

The next definition introduces a condition that allows ugtmove spurious ambiguity from bottom-up shift-reduce
parsers. Informally, the condition requires that the exise in the system of a reduction of some type involving stack
positionsp andgq, p > ¢, always implies the existence in the system of reductiorts®@Bame type involving stack
positionsp’ and¢’ with p’ < p andq’ < ¢. We need some additional notation. Lela,.,) be a set of transitions
includingla, 1«4 if p > ¢+ 1, lap_1.4—1 if ¢ > 1, and no other transition. Similarly(ra,—.,) includesra,_1_,
if p>q+1,rap_14—1 if ¢ > 1, and no other transition.

Definition Let S be a bottom-up shift-reduce transition system with setarigitions?’. S is monotonic if for each
t € T'we haveu(t) C T.

Example 2. The transition-based parser rm06] can be writtas the bottom-up shift-reduce system with
transitionssh, la,.; andra,_,; for everyp with2 < p < d, d = depth(S). The system with depth as used by
Kuhlmann and Nivfe [2010], Cohen etlal. [2011], has trarsitssh, las, 1, ras_1, las1 andras_,.

These systems are monotonic for every valuk since for a transitiofia,._1, we have that(lap« 1) = {lap—11}
(if p > 2) or @ (otherwise), and thereforg(la,.1) is included inT". The same also holds fei(ra,_.1).

The monotonicity property is crucial for the main resultlubtpaper: if a bottom-up shift-reduce transition system
is monotonic, we can systematically obtain an equivalesiiesy without spurious ambiguity, as described in the next
section.

3 Removal of Spurious Ambiguity

Let S be a bottom-up shift-reduce transition system that is namot We show how we can systematically obtain a
new transition syster’ without spurious ambiguity that is equivalent§othat is,S” parses the same set of trees as
S. In essence, this is the main result of this paper, which esfiotmally stated as follows:

Theorem 3. Any transition systeny which is bottom-up shift-reduce and monotonic, can alwaysdnverted into
an equivalentransition systen$’ that does not have spurious ambiguity, such that:

(i) for each complete computatioef of S’ onw there is a complete computatianof S such thatD(v) = D(v');
and

(i) for each complete computatienof S onw there is a complete computatiafhof S’ such thatD(y) = D(v').

Next, we describe how’ is created, and give full formal proofs of this theorenifZh

3.1 Stack Symbols

Recall that inS each stack symbol is an integerepresenting the word occurrenegin the input string. Each stack
symbol inS” is obtained by annotatingwith the following Boolean features:

¢ afeature.stop indicating whether, in the current analysis, the waydhas collected all of its dependents Er
it is still seeking some of thent};

e for eachkt with 1 < k < deg(5), a feature.left,, indicating that a left reduction is allowed or forbidden F)
between symbal and the symbok positions below in the stack;

e for eachk with 1 < k < deg(5), a feature.right,, indicating that a right reduction is allowei)(or forbidden
(F) between symbal and the symbok positions below in the stack.

We now introduce some predicates that will be used later fimel¢he new transition syste§f. Leti andj be
stack symbols of’. The predicatéu(i, j) = —i.stop A j.stop indicates whether a bottom-up link from nodléo
nodej is admissible in the current configuration, i.e., whethedevocan accept a dependent and ngdes already
collected all of its dependents. Assume thand; are located at stack positiopsandq, respectively, withp > q.
Then the predicatEs

left(i, j; p, q) = jleft,—q) A bu(j,i) Alapeq €T,
right(i, j; p, q) = j.right(,_g) Abu(i,j) Arapog €T

indicate that reductioris,,._, andra,,_,,, respectively, aravailablein the current configuration, i.e., these reductions
can be performed by the parser. As we will see later, the naifoavailable reduction plays a crucial role in the
construction ofS’.

3.2 Transitions

The basic idea underlying the construction$fis to perform reductions as early as they become availabée in
computation, according to the notion of available reductivat we have just introduced. This is implemented as
follows.

We define gpriority relation among transitions il such that, in choosing between several reductions that are
compatible with some dependency tree, we give highestipyrimrthe reduction with its dependent closest to the top
of the stack. This reduction is necessarily unique, givaiitha dependency tree each dependent has a unique head.
The shift transitions are always assigned the lowest pyiori

Note that the priority relation can be seen as a partial didereen reductions, but the set of reductions that are
compatible with a given tree is totally ordered, due to trstrietion that a node cannot have more than one head.

In the new transition systersf we simulateS as follows. Given a configuratiatj of S’ representing a configura-
tion ¢; of S, we consider the séft., of all transitions fromS that are available at . We nondeterministically choose a
transitiont € 7., and simulate it oy, underS’, moving into a new configuratios,. Most important, ir;, we set the

2Here we are overloading symbadist andright, with related meanings: it will always be clear from the estitwhether these symbols refer
to features or else to predicates.

feature of the stack symbols in such a way that all transtiarY, that had higher priority thahare now blocked,
meaning that no computation spanning frefrwill ever be able to apply such transitions. We can now sgemiir
construction.

For a stack symbal of S, we writei[T] to denote the stack symbol 6f such that.po = T for every featurep.
For a featurep and a valuev, we write j = i[p « v] if j.o = v andj.¢’ = i.©’ for every other feature’. We
generalize this notation to a set of featufesand writej = i[p + v | ¢ € F]if j.o = v for eachy € F and
j.p = i.p for eachy ¢ F. Finally, as a shorthand, we writgp + v | ¢ € F;¢’ « o' | ¢ € F']in place of
(ilp v | pe FY' «v' | ¢ € F.

The systen’ obtained by removing spurious ambiguity fréérhas a set of transitiori®’ including all and only
the transitions reported below, wheyés depth(.S):

sh® :(olislis—1| .. |i1,4|8, A) F
(olislis_yl- .- |11, B, A)
where we let’ = i[T], and for everyu with 1 < u < § we let

ir, = iyllefty < F | left(iuir, iu;u + K, u);

right, < F | right(iytr, iu;u + k,u)l.
Transitionsh® simulates a shift of5. The superscript means that the new symbgl added to the stack has the
featurestop set toT, that is, we (nondeterministically) guess thiats now ready for bottom-up reduction. Since

the shift transition has always the lowest prioritySnsh® blocks any reduction that was available in the antecedent
configuration, by setting the features of eaghas indicated above.

We also add td@” a transitiorsh® defined exactly ash® but with the only difference that we &t = (i[T])[stop <
F], that is, we guess that nodes still seeking dependents in the current analysis.
For eachra,_,, in T', we add tol”’

ray g (oliplip=1|... i1, 8, A) F
(olif] Vit y |15, B, AU (i = ig})
which can only be applied under the preconditi@ht(i,, i,;p, q). Here we let, = i,[stop < T], and for everyu
with 1 < u < d we let

-/

i, = dyflefty <~ F | u+k < g Aleft(iytr, tu;u+ k,u);
right, < F | u < g A right(iygr, tu; v+ k,u)l.

As for the shift transition, we also add1d a transitiorra;, _, , defined exactly as? ., , butwithi), = i, [stop < F].

. P—q
Reductionsa;_, , andra,_, , block every reductionallowable in the antecedent configuration that has pridigyer

than the reductiop — ¢, that is, with a dependent at a position closer to the topestack tham.
Similarly to the above, for eadh,,., in 7" we add tol”

lay, , (oliplip—1] ... |i1, 3, A) =
(olify |- 1i5. B. AU {ig = ip})
which can only be applied under the preconditiefit(i,, i;; p, ¢). Here we leti;, = iy[stop < T], and for everyu
with 1 < u < d we let
ir, = iyllefty < F | u+k < p Aleft(iyrk, tu;u + k,u);
right, < F | u < p Aright(iutr, tu; u + k, uw)].
We also add td” a transitioriaf;_q defined exactly ak,, , but withi; = i,[stop + F].
The initialization function and final configuration set$ffare like those of, but we have to specify feature values

for the stack symbol corresponding to the dummy root nibdal its features will bd= in the initial configuration, and
in final configurations it must have theft;, andright,, features set t& butstop set toT.

Example 4. If we apply the transformation defined in this section to reegpurious ambiguity from the arc-standard
transition system of Examplé 1, we obtain a systnwhere the only valid computation for the tree with arcs
{0—>2,2—-1,2—3}is

(I(w)§ sh?, Shga lagelv sh®, ras_1, ra;%l%

which builds the arcs in the same order as the computationf @xamplélL.

It is easy to check that an alternate computation building dincs in the order of the computation (ii) does not
exist inS’. Such a computation would have to start with the transitidrissh®, sh®, ra3_,, (the need to use theor 5
variant of each configuration is uniquely determined by Whehodes have pending dependents or not).

However, after applying these transitions the parser wallib a configuratior([0, 1, 2], [], #) with:

0.stop = F, 0.left; = F, O.right; = F,
l.stop =T, 1l.left; =T, l.right; = F,
2.stop = F, 2.left; = F, 2.right; =T.

At such configuration, the feature val2igeft; = F blocks the left reduction creating the atc— 1. This is so because
thesh® transition that moved the nodsto the stack set this value B blocking this left reduction since it could have
been executed at that point with higher priority theri.

4 Formal Properties and Proofs

We now proceed to prove that the described transformatiathéoremoval of spurious ambiguity is correct (i.e. prove
TheoreniB). To do so, we first show that transition systémasd.S’ defined as irfd are equivalent, i.e., they assign
the same set of trees to any input string. Afterward, we shahS’ has no spurious ambiguity, i.e., different complete
computations of” will always produce different dependency trees.

4.1 Equivalence of Unambiguous System to Original System

Let S andS’ be defined as in Sectidh 3, with associated transitionBetsd7”, respectively. To show that and S’
are equivalent, we need to prove that for every input stiing

(i) for each complete computatiofi of S’ onw there is a complete computatigrof S such thatD(y) = D(v');
and

(i) for each complete computationof S onw there is a complete computatighof S’ such thatD(y) = D(v/).

The proof of (i) is rather straightforward. We show a mappiragn the complete computations ¢f to the
complete computations ¢f that preserves the associated trees. We define a homonmarphism 7" to T' by letting

T(Iazs)<—q) = T(Ia;—q) = lap<—q7
T(raj_,,) = T(raqu) = rap_q,

P4
7(sh®) = 7(sh®) = sh,

and extend it to (complete) computations (recall that weasgnt a computation by its initial configuration and its
sequence of transitions) by letting(co; t1, .. .,tm)) = (co; T(t1), .. ., T(tm))-

Itis not difficult to see that ify is complete, them(~) is also complete. Furthermore, this mapping preserves,tree
i.e., for any computation of S’ we haveD(y) = D(7()), because transitiorisc 7’ andr(¢) € T create the same
arc, if any. This concludes the proof of (i).

To prove statement (ii) above, let= co, ..., ¢ = (co;t1, - .., tm) be @a complete computation 6ffor an input
stringw, and letA, be the set of arcs if(). We show that we can always find a computatiérof S’ such that

D(~") = D(v). To do this, we introduce below the notion of canonical cotapans ofS. Then we proceed in two
steps: first we transform into a canonical computations of S equivalent toy, and then we transform; into an
equivalent computatioty’ of S’.

Consider a configuratior,, 0 < k£ < m, appearing iny. Let Ry, - be the set of reductions éfthat can be applied
to ¢, and that are compatible witR(v), i.e., these reductions construct an gic— d) € A,. Herea,, is the head
word anda, is the dependent word, both from

Assume thaiR; , # 0, and lett, be the reduction irR;, , with the highest priority. This means thgtis the
reduction inRy, , with dependent nodeé placed at the position closest to the top in the stack assolwith ¢, or,
equivalently, the reduction with the largest value of indei w. Note that there cannot be more than one such
reduction, due to the single-head constrainbift).

We say thaty, is atroublesomeconfiguration iny if ¢,11 # t,. This means that,; is either a shift transition,
or else a reduction ik, , that, when applied toy, creates a dependency link — d’ with d’ < d, i.e., a reduction
with lower priority thant,, since node!’ will be placed at a deeper position than nalie the stack associated with
Cl.

We say that a computation 6f is in canonicalform if it does not contain any troublesome configurationisTh
means that, at each configuratignof a canonical computation, the reduction?, , with the highest priority is
taken, in case seRy, , is not empty. We now show that for every computatipiof S there exists an equivalent
canonical computation; of S. We show how to eliminate the leftmost troublesome configioman ~; iteration of
this process will always produce a computation where no gardiions are troublesome.

Let ¢, be the leftmost troublesome configurationjinWe show that we can build a computatignof S which is
equivalent toy, and such that its firgt configurations are not troublesome. The transition seqing, .. ., ¢,, can
be written in the form

thtr1, Thyo, - - 7tj_1,t;), tivi,-- s tm
wheret/, is a reduction creating the same lihk— d that should have been created by the reduatioa Ry, with
the highest priority. Note that reductisfymust take place at someg in y with j > k£ + 1, becausé — disin D(v),
and this link cannot be presentin the arc set associated:w(ihit were, the reductior, could not be available a
becausel would not be in the stack at that configuration).

The sequencg,.1, . . ., t,, in v can then be replaced (generating the same tree) with

tpa Td(tk+l)7 s 7Td(tj—l)7tj+17 s 7tm

wherer,(t) represents the transition that creates the same arc in la\steere the nodg has been removed as
would create in a stack where the ngdis present. Formally, for a transition applied at a confitjarec with stack
olip|...|igl|...|i1, we definery(sh) = sh and

rap—q if 4, > dandig > d,
Ta(rap—q) = { rap_1-4 if i, < dandi, > d,
rap—1-q¢—1 if ’ip <d andiq <d.

lapq if 3, > d andi, > d,
Ta(lap—q) = { lap_1+4 If i < dandi, > d,
|ap,1<7q,1 if ip <d andiq <d.

Note that, sinces' is monotonic, the existence of a transitioimplies the existence af;(¢).
The computations, and~ produce the same tree. Also,j@ the firstk configurations are not troublesome, since
applying the reduction, at ¢, makesc;, not troublesome, and by construction the configurationbedeft ofc;, in
~ are not troublesome.
By iteratively applying the above process, we eventuallaisba computatiory; of .S such thatD(yy) = D(v).
It then remains to show that we can obtain a computatiaf S’ with the same associated dependency tregras
Letys = (co;ti1,...,tm) and assume that for eaghl < j < m, transitiont; in v applies to configuration
cj—1 = (alip| -+ |ig|---|i1,70|B, A). The computationy is obtained as’ = (co; 1}, .. .,t,,), where for eachy, t’ is
specified as follows.

o If t; =ra, ., thent)isras , if A\ (AU{(ip,i,)}) contains a dependency link of the fofm, u) for some

, pa .

u, andt’; isra,_, otherwise.
o Ift; = I/aP<_q;thent;- islay,
u, andt’; isla,,_, otherwise.

if A, \ (AU{(44,7p)}) contains a dependency link of the fofiy, u) for some

e If t; = sh, thent’ is sh® if A, \ A contains a dependency link of the forfi, u) for someu, andt’; is sh”
otherwise.

Itis not difficult to see that’ is a valid computation of” for w. This follows from the fact that the transitiorls
above satisfy théu(s, j) predicates in5’, and the fact that in; reductions are applied in accordance to the priority
relation. We also observe that+f; is complete then/ is complete as well. Finally, the fact th&x(y') = D(vy)
follows immediately from the above mapping from transitionto transitiong’;. This concludes the proof of (i) and
thus the proof of the equivalence 8fandS’.

4.2 Non-ambiguity of the Transition System

To prove that our transformed systethhas no spurious ambiguity, we need to show that differenftet® compu-
tations ofS’ for w always produce different trees, i.e.pif # 2 are complete computations 8f for input stringw,
thenD(y1) # D(72).

To do so we writey; asacy 81 andys asacs 32, with o the common prefix among both computations, ana:
configurations such thaf # c,. Note thata cannot be empty, since both computations must at least havaitial
configuration/ (w) in common. We calk, the last configuration imv, andty, t» the transitions that produce, co
(respectively) fronry. We distinguish four cases below.

Case 1:t; andt, are transitions that differ only in thetop feature of some new nodein the configuration they
produce. As an example, we haie= la;, , andty = Iaiw, which differ in thestop feature of node: = ¢. Without
loss of generality, we assumestop = T in ¢1, andu.stop = F in ¢y. Letey = (o, 3, A). ThenD(+2) must contain
at least one arc originating fromthat is not present im, while D(+;) cannot contain any arc originating from
that is not already im, because:.stop = T prevents the addition of dependentscdftert, is executed. Therefore,
D(71) # D(72).

Case 2:t; andt, are reduce transitions with different head nodes but theesdependent node. In this D(v,) #
D(~2) follows from the single-head constraint, since the nodéll be assigned different heads+a and-~-, respec-
tively.

Case 3i; andt, are reduce transitions involving different dependent so@&ippose that creates the ark; — d;
andt, creates the arbs — do. Without loss of generality, we assume that> ds, i.e.,t; has higher priority than
t2. ThenD(v) contains the aré; — d;, but D(v2) cannot contain this arc, since the system'’s features blsck i
construction after the application of the transitigrat configuratiorg.

Case 4, is a reduce transition and is a shift transition. The same reasoning of Case 3 applesattch; — d;
created by; cannot appear i (2), because the system’s features block its construction thieshift transitiorto

is applied. This concludes the proof thf#tdoes not have spurious ambiguity.

4.3 Complexity

Let S be a bottom-up monotonic transition system, andltef(S) = §. The construction iff3 adds2é + 1 binary
features to each stack symbol $f This results 229+ new symbols inS’ for each stack symbol of. While for
projective dependency parsing we have 1, degree larger than one is needed in non-projective parsiogever, it
has been observed r 06] that most of the noneptivje trees in the CoNLL data can be parsed With 2
or 3. This means that, in practical cases, the blow-up of stacksys by our construction can be considered a small
constant.

To discuss a concrete application, consider the non-piogesystems of [Attardi, [2006], also shown in Exam-
ple[2, restricted t@ = 2, which is still heavily affected by spurious ambiguity. Wavie applied the construction in
g3 to S with some ad-hoc optimization of the features for that systesulting in a new systersf with a blow-up of

Language Size | Attardi | This paper
Arabic 1,460 27 2
Bulgarian | 12,823 47 36
Czech 72,703| 1,334 602
Danish 5,190 179 159
Dutch 13,349| 1,448 1,018
German 39,216 2,140 1,538
Japanese | 17,044 121 45
Portuguese 9,071 295 203
Slovene 1,534 48 27
Spanish 3,306 11 10
Swedish 11,042 197 105
Turkish 4,997 208 102

Table 1: Coverage of Attardi’s oracle versus the coveragmiofracle for various treebanks from the CoNLL 2006
data sets [Buchholz and Marsi, 2006]. “Size” denotes thebarof sentences in the treebank (we used the training
portion only), “Attardi” denotes the number of sentencex thttardi’s oracle could not parse and “this paper” denotes
the number of parse trees that our oracle could not parse.

stack symbols o2+ = 8. This means that we can apply$6 the inside/outside algorithm presenteMet al.
[2011], working in timeO(|w|7) for an input stringw, with an extra hidden constant &f

5 Experiments

As mentioned earlier, transition-based dependency parses an oracle to convert training data which consists of
pairs of sentences and dependency trees to pairs of sesigitleshift-reduce sequences, in order to sidestep the issu

of spurious ambiguity. The new training data is then usedaio imulti-class classifiers. In several cases, oracles are
based on heuristics and are incomplete. The oracle thabvédad in the DeSR dependency parsing pacﬂaghlch

is based on the parser from Atta 06], is an exampledohsncomplete heuristics.

We compared the coverage of Attardi’'s oracle, restrictettansitions of degree at mogt to the oracle of an
equivalent transition system without spurious ambigﬂli@ur findings are given in Tablg 1. As theoretically guaran-
teed, there were no cases where Attardi’'s parser recogaizee using transitions of degree 2, and our oracle did not
recognize it. The reverse, however, holds quite often.

6 Discussion

We note that monotonic bottom-up shift-reduce transitipstesms can be made probabilistic and generative, in a
manner similar to_Cohen etlal. [2011]. The issue with sprambiguity is especially crucial with generative models
in the unsupervised setting, when using algorithms sudheasxpectation-maximization (EM) aIgorithm& al.
] describe an EM algorithm for the system f], which can be extended to any monotonic bottom-
up transition system. The EM algorithm they describe canuothér extended to monotonic bottom-up transition
systems after removal of spurious ambiguity (as we desaritigs paper), making these systems readily available for
transition-based unsupervised learning for dependemrrsyrma

3http:// desr. sour cef or ge. net /!

4Note that the algorithm implemented in the latest versioB@®R, which we used for these experiments, differs from #seription provided
in[Attardl [2006] and ExamplEl2 in thass._ 1 andras_,; transitions push a node from the stack back to the buffer edtiucing. This does not
affect our method to remove spurious ambiguity, which isecirboth for the version described in Attardi [2006] andtfe latest implementation
of Attardi's parser.

10

http://desr.sourceforge.net/

7 Conclusion

We provided a principled treatment to the issue of spurioubiguity in transition-based dependency parsing. We
defined a large class of transition systems, which we callatamc bottom-up shift-reduce transition systems, that
cover existing systems such as the arc-standard pa] and the non-projective parser of Atta 006],
as well as systems in which reductions affect elements atiguus in the stack deeper than the topmost element
[Goldberg and Elhadad, 2010]. We then showed how to elirmisptirious ambiguity from these systems. Our tech-
nigue has applications for unsupervised and superviseehdigmcy parsing. The transition model that we present can
be used as a substitute for models such as the dependenciwithdealence that have long been used for dependency
grammar induction| [Klein and Manning, 2004, Cohen and Spgiei0, Spitkovsky et al., 2010].

In this paper we have discovered some sufficient conditiovdeuwhich spurious ambiguity can be removed
from bottom-up dependency transition systems, which wesharp as “tight” as possible. However, our technique
does not work for all dependency transition systems, anenitains an open problem to show whether removal of
spurious ambiguity can be carried out in the general casereTimight as well be dependency parsing strategies for
which removal of spurious ambiguity is not only difficult, tteimply impossible. A similar scenario is observed, for
instance, for structural ambiguity in context-free gramsnevhere some context-free languages can only be generated

using ambiguous context-free grammars; see for instancerdft et al. [2006].

References

Giuseppe Attardi. Experiments with a multilanguage nooigutive dependency parser. Pmoceedings of the Tenth
Conference on Computational Natural Language LearningNCo), pages 166—170, 2006.

Rens Bod. A computational model of language performancda Daented parsing. IProceedings of COLING
1992.

Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on itndfual dependency parsing. Froceedings of the
Tenth Conference on Computational Natural Language Leay§CoNLL) pages 149-164, 2006.

Shay B. Cohen and Noah A. Smith. Covariance in unsupervisaching of probabilistic grammarsJournal of
Machine Learning Research1:3017-3051, 2010.

Shay B. Cohen, Carlos Gomez-Rodriguez, and Giorgio Saf=act inference for generative probabilistic non-
projective dependency parsing. Gonference on Empirical Methods in Natural Language Preoes(EMNLP)
pages 1234-1245, 2011.

Edward Gibson. The dependency locality theory: A distapased theory of linguistic complexity. Image, lan-
guage, brain: Papers from the first mind articulation prajegmposiumpages 95-126, 2000.

Yoav Goldberg and Michael Elhadad. An efficient algorithm éasy-first non-directional dependency parsing. In
Human Language Technologies: The 2010 Annual Conferentteedorth American Chapter of the Association
for Computational Linguisticpages 742—750, Los Angeles, California, June 2010. Asgonifor Computational
Linguistics. URLht t p:// www. acl web. or g/ ant hol ogy/ N10- 1115,

John E. Hopcroft, R. Motwani, and Jeffery D. Ullmantroduction to Automata Theory, Languages, and Compautati
Addison Wesley; 3rd edition, 2006.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Trepiat GrammarsJournal of Computer and System
Sciencesl0(2):136-163, 1975.

Dan Klein and Christopher D. Manning. Corpus-based indunctif syntactic structure: Models of dependency and
constituency. IrProceedings of the 42th Annual Meeting of the AssociaticBarhputational Linguistics (ACL.)
2004.

11

http://www.aclweb.org/anthology/N10-1115

Marco Kuhlmann and Joakim Nivre. Transition-based techesofor non-projective dependency parsitNprthern
European Journal of Language Technologyl):1-19, 2010.

Marco Kuhimann, Carlos Gbmez-Rodriguez, and Giorgida&SaDynamic programming algorithms for transition-
based dependency parsers.Pimceedings of the 49th Annual Meeting of the Associatio€@mputational Lin-
guistics (ACL) Portland, Oregon, USA, 2011.

Joakim Nivre. An efficient algorithm for projective dependg parsing. InProceedings of the Eighth International
Workshop on Parsing Technologies (IWPgages 149-160, Nancy, France, 2003.

Joakim Nivre. Incrementality in deterministic dependepaysing. InWorkshop on Incremental Parsing: Bringing
Engineering and Cognition Togethgrages 50-57, Barcelona, Spain, 2004.

Joakim Nivre. Dependency grammar and dependency parsaafpnical report, Vaxjo University, 2005.

Joakim Nivre. Algorithms for deterministic incrementapg@dency parsingComputational Linguistics34(4):513—
553, 2008.

Joakim Nivre, Johan Hall, and Jens Nilsson. Memory-basgeém#ency parsing. IRroceedings of the 8th Con-
ference on Computational Natural Language Learning (CoiD04) pages 49-56, Morristown, NJ, USA, 2004.
Association for Computational Linguistics.

Khalil Sima’an. Computational complexity of probabilstlisambiguation by means of tree-grammarsPioceed-
ings of COLING pages 1175-1180, 1996.

Valentin Spitkovsky, Hiyan Alshawi, and Daniel Jurafskyrof baby steps to leapfrog: How “less is more” in
unsupervised dependency parsing.Humman Language Technologies: The 2010 Annual Confereniteddorth
American Chapter of the Association for Computational Lisgcs (NAACL)pages 751-759, 2010.

Mark SteedmanThe Syntactic Proces$/IT Press, 2001.

12

	1 Introduction
	2 Transition-Based Dependency Parsing
	2.1 General Transition Systems
	2.2 Spurious Ambiguity
	2.3 Bottom-Up Shift-Reduce Transition Systems

	3 Removal of Spurious Ambiguity
	3.1 Stack Symbols
	3.2 Transitions

	4 Formal Properties and Proofs
	4.1 Equivalence of Unambiguous System to Original System
	4.2 Non-ambiguity of the Transition System
	4.3 Complexity

	5 Experiments
	6 Discussion
	7 Conclusion

