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Abstract
We present the system submission from the
FASTPARSE team for the EUD Shared Task
at IWPT 2021. We engaged in the task last
year by focusing on efficiency. This year
we have focused on experimenting with new
ideas on a limited time budget. Our system is
based on splitting the EUD graph into several
trees, based on linguistic criteria. We predict
these trees using a sequence-labelling parser
and combine them into an EUD graph. The re-
sults were relatively poor, although not a total
disaster and could probably be improved with
some polishing of the system’s rough edges.

1 Introduction

In our group’s submission to the IWPT 2020
shared task on EUD parsing (Dehouck et al.,
2020), we focused on efficiency by applying dis-
tillation and training set reduction together with a
rule-based approach to convert EUD graphs to UD
trees that could be processed by an off-the-shelf
parser. Here we describe our entry to the 2021
edition (Bouma et al., 2021), where we keep the
focus on algorithmic simplification of graphs, as
well as a prioritisation of efficiency over raw ac-
curacy, but we take the chance to explore different
questions that we deem interesting in the context
of a breadth-first exploration of the search space of
parsing techniques, even if they are not (at least in
their current form) competitive in terms of pushing
speed or accuracy metrics.

In particular, we wanted to experiment with the
application of sequence labelling parsing (Strzyz
et al., 2019b) to the problem, which we apply to
graph parsing for the first time. And more in par-
ticular, with the use of a linguistics-oriented ap-
proach (à la Dehouck et al. (2020)) to guide the
parsing process by splitting the EUD graphs into
coherent components that can be then parsed by a
multitask learning system.

Sequence labelling, the task of assigning one
discrete label to each token of a sequence, has
long been used for various natural language pro-
cessing tasks whose output can naturally be repre-
sented in this form, such as PoS tagging or named
entity recognition. In the case of syntactic pars-
ing, sequence labelling can be applied after defin-
ing an encoding that casts each possible syntac-
tic tree for a sentence of length n as a sequence
of n labels. While an early attempt to apply it
to dependency parsing (Spoustová and Spousta,
2010) yielded subpar accuracy, the advances in
machine learning architectures in the last decade
have made this kind of approaches practically vi-
able both for constituency (Gómez-Rodrı́guez and
Vilares, 2018) and dependency parsing (Strzyz
et al., 2019b). However, to our knowledge, se-
quence labelling approaches have not previously
been tried for any sort of graph parsing.

One possible way of extending the search
space of a parsing approach is to apply the ap-
proach to parse a constant amount of subgraphs
(typically, two) whose union provides the fi-
nal output. This has been applied to go be-
yond noncrossing dependency trees in transition-
based dependency parsing by splitting trees into
two subsets of arcs (planes) such that there
cannot be crossings within each of them, but
their union (the final output) can have crossing
arcs (Gómez-Rodrı́guez and Nivre, 2010; Gómez-
Rodrı́guez and Nivre, 2013; Fernández-González
and Gómez-Rodrı́guez, 2018). In semantic pars-
ing, it has also be used to extend the search space
from noncrossing graphs to pagenumber-2 graphs
by Sun et al. (2017), who use graph-based pars-
ing to obtain two noncrossing graphs that are com-
bined by Lagrangian relaxation. In the context of
sequence labeling, this approach was recently ap-
plied by Strzyz et al. (2020) with similar goals and
methods as the transition-based parsers above.
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While all these approaches split the output with
the goal of relaxing noncrossing constraints, the
same can be applied to relax single-head con-
straints, i.e., go from tree to graph parsing. For
example, any graph with in-degree at most 2 can
trivially be expressed as the union of two trees.
Here we apply that idea in the context of sequence
labeling parsing, i.e., we try to generate several se-
quences of labels (via multitask learning), each of
which represents a tree, and which together form
an EUD graph.

However, all these splitting approaches share
an underlying question: which of the (exponen-
tially many) possible splits is more adequate for
the model to adequately learn the parsing prob-
lem? The work cited above applies purely algo-
rithmic criteria to choose a canonical split: lazy
criteria to minimise the number of plane (subset)
switches (Gómez-Rodrı́guez and Nivre, 2010) or
the number of arcs assigned to the second plane
(Strzyz et al., 2020), or systematic algorithms that
assign crossing arcs to alternating planes (Sun
et al., 2017). These provide splits that are related
to the full parse by systemantic structural criteria,
but not by linguistic criteria. Since it has been re-
peatedly shown that it is possible to jointly learn
different kinds of dependencies in such a way that
they complement each other (e.g. with syntac-
tic and semantic dependencies, as in (Henderson
et al., 2013; Zhou et al., 2020)) and sequence la-
beling parsing can benefit from integrating several
linguistic representations using multitask learning
(Strzyz et al., 2019a), what if we try to split parses
in a linguistically meaningful way, yielding sub-
sets of dependencies with a distinct meaning that
can then be jointly learned? Here we evaluate such
an approach.

2 Splitting graphs

The vast majority of nodes in a EUD graph only
has one incoming edge. If we were to only use

one edge per node, we would cover 94.15% of
the edges. Only allowing a maximum of two in-
coming edges covers 99.53 % edges, three covers
99.88%, and four covers 99.95%. Figure 2 shows
how many nodes have different numbers of incom-
ing edges. Note the logarithmic scale used for the
number of nodes. We believe that our graph split-
ting process results in covering a maximum of two
edges, although we have not checked it formally.
We attempted to split the trees in a linguistically

Figure 2: Counts of nodes with x number of incoming
edges.

grounded way. We first create what call the basic
tree which most closely corresponds to the rela-
tive UD tree. We then create a relative, control,
and conjunct tree. It is worth noting that, con-
trary to the work cited in the introduction where
parses are split into two disjoint subgraphs, here
we have four trees and all these trees can (and usu-
ally) overlap. We now describe the different trees
into which we split the graph, as well as the collat-
ing procedure to combine output trees again into
an EUD graph.

Basic tree This tree is made up of the EUD
edges that correspond directly to the UD edges.
With one exception for case marking. We add
a relative position for the lemma (rather than the
lemma itself). This means multi-word case mark-
ing is not covered. If no such edge exists we set

The tape was a way to signal priorities
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DET MARK
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OBJ
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Figure 1: Basic tree split. Only ACL:TO changes to ACL:-1 for the relative lemma encoding.
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the edge to (0, root). Although there should be no
way this introduces cycles, we check for them any-
where and if any are found we use the Chu-Liu-
Edmonds algorithm (CLE) (Chu and Liu, 1965;
Edmonds, 1967), setting scores for expected edges
to a sufficiently high value so that they are pri-
oritised, while the others are set very low. If the
MST tree has a different edge than in the basic
tree, we set that edge to (0, root). If the CLE al-
gorithm changes the ref edge, we change the in-
coming edge to its head to (0, root). An example
is shown in Figure 1.

Relative clause tree We take the basic tree of a
graph and replace incoming edges to nodes with
ref edges. Again we check for cycles. This
tree type was based on an error. We thought that
the relative pronoun had two incoming edges: one
from the head of the relative clause and one from
the referent. This meant we unnecessarily split
the basic and relative trees. An example of this
is shown in Figure 3.

Conjunct tree We start from the basic tree.
When an edge is “conj” we replace it with the edge
in the EUD column that has the same rel as the
conj head edge. We use the same cycle check as
for the previous trees. An example is shown in
Figure 4.

Control tree We take the basic tree again and
this time replace the original nsubj edges of a node
when its head has an incoming xcomp or ccomp
edge with the other nsubj edge in the EUD graph
for the node. We handle potential cycles as usual.
An example is shown in Figure 5. Another er-
ror is introduced here, where we don’t swap in the
ccomp edges.

Cycles Only Arabic-PADT has issues with
acyclicity after running CLE. So we just collapse
the edges that have been changed (this accounts
for three instances in the training data).

Collating trees into graphs As we operated on
a limited time budget, the collating method is egre-
giously simple. For each node, we take the set of
unique edges from all the predicted edges across
all trees. When an edge exists between wi and wj

in more than one tree, we use the label from the
first occurrence which is typically that of the basic
tree.

Table 1 shows the EULAS and ELAS when
splitting the gold graphs and collating them again.

We clearly can cover most of the graph edges with
this procedure with Arabic enhanced labels being
very low. We believe that this is a bug, but it could
be due to some inherent unexpected characteristic
of our basic splitting procedure.

EULAS ELAS

ar-padt 94.04 81.91
bg-btb 97.09 97.06
cs-cac 94.72 93.18
cs-fictree 94.21 91.75
cs-pdt 94.41 92.36
en-ewt 97.44 97.44
en-gum 97.09 97.09
et-edt 95.61 92.35
et-ewt 95.75 91.27
fi-tdt 92.73 87.13
fr-sequoia 96.22 96.22
it-isdt 96.32 95.98
lt-alksnis 94.08 87.35
lv-lvtb 93.77 93.77
nl-alpino 98.07 98.01
nl-lassysmall 97.34 97.30
pl-lfg 99.02 99.02
pl-pdb 96.37 96.19
ru-syntagrus 97.97 97.68
sk-snk 96.23 94.18
sv-talbanken 96.31 96.31
ta-ttb 97.62 93.39
uk-iu 96.35 95.97

Table 1: Graphs formed from splitting the gold an-
notated development trees and subsequently collating
them again.

3 Parser

We use a BiLSTM network which has word
and character embeddings as input. We use a
sequence-labelling parser so the edges are pre-
dicted as separate labels for each token. Simi-
larly, the edge labels are predicted separetly. But
both label predictions are jointly trained with a
hard-sharing multi-task architecture with equal
weighted loss contributions. UDPipe 2.0 was
used for tokenization, lemmatization, and tagging.
FastText word embeddings were used but limit vo-
cab space to 50k tokens for memory constraints
(Bojanowski et al., 2017). We then train 4 parsers
for each treebank which are trained on the data
generated by splitting the graph, i.e. there is one
parser for the basic trees, one for the relative trees,
and so on. Then the parsers are used to predict
their respective tree type and these are all collated
to create the predicted graphs for each treebank.

Sequence labelling parser (SEQLAB) is a pars-
ing approach based on encoding trees as a se-
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They look like they were doberman pinchers who were shrunk
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Figure 3: Relative tree split. Top full EUD graph, middle basic tree, bottom relative tree.

quence of one label per token in a sentence, so
parsing is reduced to a standard sequence labelling
problem (Spoustová and Spousta, 2010; Li et al.,
2018; Strzyz et al., 2019b).1 We choose to use
the original bracketing encoding from Strzyz et al.
(2019b), as it does not require UPOS tags on de-
coding (the other leading encoding does). While
there is a more recent bracketing encoding that
covers more non-projectivity (Strzyz et al., 2020),
this also involves splitting trees which we assumed
would add too much complexity on top of our
linguistic-based splitting. Our chosen encoding
represents a tree as sequence of tags composed of
left and right brackets representing each word’s in-
coming and outgoing arcs. Namely, the encoding
for wi is based on:

1We use refactored encoding/decoding functions from
https://github.com/mstrise/dep2label.

< — if εj(i−1) ∈ E ∧ j > i− 1

\— ×k | k =
∑

wj∈S

{
1 if j < i ∧ εij ∈ E
0 otherwise

/ — ×k | k =
∑

wj∈S

{
1 if i−1 < j ∧ ε(i−1)j ∈ E
0 otherwise

> — if εji ∧ j < i

We repurposed a PyTorch biaffine implementa-
tion and edit it to be a simple sequence-labelling
system, i.e. embedding layers, followed by a num-
ber of BiLSTM layers, and one MLP for predict-
ing bracket tags and another for edge labels. The
hyperparameters are shown in Table 2. The origi-
nal code for the biaffine is no longer available but
a similar version is still available.2 More details of
the system can be found in Anderson and Gómez-
Rodrı́guez (2021).

2https://github.com/yzhangcs/parser
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A clean and stable version is attached
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Figure 4: Conjunct tree split. Top full EUD graph, middle basic tree, bottom conjunct tree.
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Figure 5: Control tree split. Top full EUD graph, middle basic tree, bottom control tree.
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That church had a boggin’ stench to it
<\ <\ / < <\\> / < \>
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Figure 6: The bracketing encoding introduced by
Strzyz et al. (2019b).

Hyperparameter Value
Word embedding dimensions 300
Char embedding dimensions 100
Char BiLSTM dimensions 100
Embedding dropout 0.33
BiLSTM dimensions 500
BiLSTM layers 3
BiLSTM dropout 0.33
MLP layers 1
Learning rate 0.02
MLP dropout 0.33
Momentum 0.9
L2 norm λ 0.9
Annealing 0.75∧(t/5000)
ε 1×10−12

Optimiser Adam
Loss function cross entropy
Epochs 200
Min vocab freq. 1
Batch size 32
Patience 10

Table 2: Network hyperparameters.

4 Results

The results were rather underwhelming, but our
system wasn’t an abject failure. Figure 7 shows
the average performance of the parsers trained on
each tree type. The performance is pretty stable
across each type which is not surprising as the
overall structure doesn’t vary greatly. But the av-
erage performance on the collated trees is quite a
bit less as shown in Table 3. We decided to in-

Figure 7: Average performance of parser on each tree
type

EUAS 86.66
EULAS 72.02
ELAS 69.21

Table 3: Average scores over all treebanks.

clude EUAS which measures the unlabelled graph
structure. This shows that the parser does learn
the graph structure fairly well, but really strug-
gles with labelling the edges. This could be due
to appending the labels with the relative position-
ing of lemmas used for case marking making it
harder to predict even the basic label type. Fig-
ure 8 shows the breakdown of the three metrics for
each treebank. It is clear that for each treebank a
fairly accurate prediction of the graph structure is
achieved, but the labelled versions perform much
worse. Table 4 shows the full results of out sys-
tem on the test data. The performance across the
board is fairly weak and resulted in the worst sys-
tem which submitted predictions for the full tree-
bank set (and was second last overall).

5 Discussion and conclusion

The relative tree split was based on a mistake. We
should have left the REF edges in the basic tree
and added the NSUBJ label variant to the referent
in the relative tree. The way it is implemented, we
lose those edges. Despite this error, we can still re-
construct most of the edges in the graphs. Beyond
this, we can’t capture higher-order edges with this
method. We did try using a SWEEP tree, to cap-
ture certain 3rd degree edges. But it seemed as the
parser struggled to make sensible predictions and
subsequently time ran out before we could test this
thoroughly.

The collator is very naive. A major issue is in-
troducing extra dummy root edges due to the na-
ture of the split. Another thing we could have tried
would have been to collate edges from trees that
are only associated with the specific phenomenon
of a given tree (i.e. conjunct trees only propagating
conjunct edges.)

Also, looking at the difference in performance
between EUAS and ELAS, it seems the labelling
is bad. And the difference between EULAS and
ELAS suggests this isn’t just a matter of the case
marking messing things up. However, the use of
relative positional encoding of the case marking
might make it harder to learn the labels. Although,
the LAS for each tree type isn’t that low. So it
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Figure 8: Performance of parser on each treebank.

Language Tokens Words Sentences UPOS XPOS UFeats AllTags Lemmas UAS LAS CLAS MLAS BLEX EULAS ELAS

Arabic 99.98 94.58 82.09 91.68 88.96 89.14 88.65 90.37 69.84 64.88 59.10 54.18 56.33 61.13 53.74
Bulgarian 99.91 99.91 94.17 99.15 97.19 97.95 96.84 97.97 87.85 83.39 78.08 74.62 75.91 80.65 78.73
Czech 99.88 99.88 93.18 98.86 95.83 96.01 94.98 98.77 83.75 79.16 74.58 69.89 73.73 76.15 72.85
Dutch 99.74 99.74 69.26 96.79 95.29 96.44 94.61 97.06 79.85 74.37 65.23 60.10 63.06 70.49 68.89
English 98.38 99.06 88.92 95.85 95.30 94.16 91.39 96.04 82.36 77.99 73.46 64.94 70.55 74.51 73.00
Estonian 99.58 99.58 85.60 96.89 97.65 95.78 94.24 94.90 71.70 64.50 59.25 54.75 56.38 63.48 60.05
Finnish 99.70 99.68 88.65 97.84 56.14 96.44 54.29 92.11 69.06 62.46 55.58 51.73 51.40 63.20 57.71
French 99.65 99.23 94.35 97.05 99.23 91.11 90.28 97.45 84.03 77.14 67.40 57.56 65.57 74.65 73.18
Italian 99.93 99.84 98.76 98.52 98.44 98.23 97.66 98.66 88.16 84.92 77.15 73.97 75.79 82.11 78.32
Latvian 99.33 99.33 98.74 96.28 89.64 93.79 88.84 95.81 78.37 72.03 67.81 60.47 65.26 67.62 66.43
Lithuanian 99.91 99.91 87.87 95.97 90.37 91.07 89.41 93.61 61.39 53.55 47.68 41.70 44.66 52.52 48.27
Polish 99.40 99.83 97.52 98.50 93.04 90.80 87.70 97.87 84.32 78.28 73.23 63.04 71.69 74.62 71.52
Russian 99.60 99.60 98.80 98.86 99.60 88.97 88.76 98.33 87.09 83.23 79.62 66.43 78.39 80.13 78.56
Slovak 100.00 99.99 85.15 97.67 90.14 93.42 89.19 96.47 78.23 71.71 66.18 59.41 63.54 67.09 64.28
Swedish 99.18 99.18 93.54 97.25 95.57 88.82 87.63 93.60 78.88 73.11 68.64 56.05 63.96 69.37 67.26
Tamil 99.16 94.26 97.52 84.19 82.67 82.27 75.64 88.95 59.80 47.66 42.60 34.50 40.15 46.18 42.53
Ukrainian 99.85 99.81 96.61 97.89 94.22 94.18 93.13 97.39 76.26 70.79 65.07 59.24 63.42 65.41 63.42
Average 99.60 99.02 91.22 96.43 91.72 92.86 88.43 95.61 77.70 71.72 65.92 58.98 63.52 68.78 65.81

Table 4: Full results on test data per language.

could potentially be an issue about the way the
trees are collated. Perhaps a first step would be
to separate the relative case marking from the re-
lation labels and treat it as a separate task in the
MTL system.

We have presented a simple technique that can
easily be extended (and implemented better) but
manages to predict relatively accurate unlabelled
graphs. It also isn’t an utter failure when consid-
ering labelled edges, but it seems curious that the
performance drops so much compared to the unla-
belled performance.
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2010. Dependency parsing as a sequence labeling
task. The Prague Bulletin of Mathematical Linguis-
tics, 94(2010):7–14.

Michalina Strzyz, David Vilares, and Carlos Gómez-
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