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Abstract: Parsing is a core natural language processing technique that can be used to obtain the 
structure underlying sentences in human languages. Named entity recognition (NER) is the task of 
identifying the entities that appear in a text. NER is a challenging natural language processing task 
that is essential to extract knowledge from texts in multiple domains, ranging from financial to med-
ical. It is intuitive that the structure of a text can be helpful to determine whether or not a certain 
portion of it is an entity and if so, to establish its concrete limits. However, parsing has been a rela-
tively little-used technique in NER systems, since most of them have chosen to consider shallow 
approaches to deal with text. In this work, we study the characteristics of NER, a task that is far 
from being solved despite its long history; we analyze the latest advances in parsing that make its 
use advisable in NER settings; we review the different approaches to NER that make use of syntactic 
information; and we propose a new way of using parsing in NER based on casting parsing itself as 
a sequence labeling task. 

Keywords: natural language processing; named entity recognition; parsing; sequence labeling 
 

1. Introduction 
Named entity recognition (NER) is a task originally defined at the 6th Message Under-

standing Conference in 1996 [1], and it consists in finding relevant named entities in the 
text belonging to a set of predefined categories. Typically, the categories considered in-
clude personal names, organizations, locations, dates or times (e.g., [2]), but they can be 
more fine-grained in specialized settings. For example, information about protein–protein 
interactions can be extracted by relating protein entities [3], drug–drug interactions from 
drug entities [4], or adverse drug events by relating drug entities to disease entities [4,5]. 
As a result, NER is a challenging problem that requires advanced natural language pro-
cessing (NLP) techniques, as entities tend to have numerous synonyms and variations that 
include long phrases and abbreviations [6]. 

Currently, NER is essential to any information extraction task, while also being the 
basis of other related or dependent tasks, from relation and event extraction to knowledge 
discovery and management [7], semantic indexing or question answering [8], with their 
performance being conditioned by the effectiveness of the entity recognition process. Ef-
fective NER is also crucial for the anonymization of documents required in some domains 
(e.g., clinical documents) before making them available for research purposes [9]. All 
these tasks can be applied after recognizing the entities involved through a pipeline ar-
chitecture [10] or by using joint models to learn entities, relations, and/or events at the 
same time [4]. 

Most approaches to NER are shallow, sequence labeling systems that are directly 
trained to recognize entities without regard for the structure or meaning of the text. How-
ever, analyzing said structure is helpful for NER, as it provides cues both for detecting the 
presence of entities (e.g., a direct object of the verb “prescribe” in English, or “pautar” in 
Spanish, will typically indicate the presence of an entity of type drug) and for delimiting 
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the exact span of entities (e.g., in “post-COVID-19 pneumonia pulmonary fibrosis,” the 
constituent boundaries of “pulmonary fibrosis” delimit an entity distinct from “pneumo-
nia”). 

Syntactic parsing, the task of determining the structure of a sentence, is a key task in 
many NLP applications that need to process text or utterances beyond a shallow level, 
extracting meaning or relations between objects, entities, or events referred to in the text. 
Syntactic parsing takes two main forms, depending on the intended output: in dependency 
parsing, the syntactic structure is expressed by means of binary directed relations between 
words, called dependencies; while in constituency parsing (or phrase structure parsing), it 
is represented as a phrase structure tree that divides the sentence recursively into its con-
stituent units. Semantic parsing goes a step further by converting natural language sen-
tences to logical forms following various representation languages, such as Abstract 
Meaning Representations (AMRs) [11]. 

In this article, we focus on the use of the information resulting from the parsing pro-
cess in the NER task. Toward this aim, we start in Section 2 by defining NER, discussing 
the use of sequence labeling in NLP, and framing NER as a sequence labeling task. We 
also review the main resources applied to the task and the evaluation measures commonly 
used. In Section 3 we define parsing and analyze the latest developments in this area that 
make parsing a convenient tool to be used in NER. We continue in Section 4 with a study 
of the most relevant NER systems that use parsing information, including both those that 
use it as a source of features in a sequence labeling setting and those that make use of 
parsing results to guide the NER process. In Section 5 we discuss the results achieved, 
summarize the different approaches in tabular form, present a new proposal for the use 
of parsing in NER based on the consideration of the parsing process itself as a sequential 
labeling process, and we compare it with a sequence-to-sequence approach. In Section 6 
we analyze work related to this article, to finally elaborate the conclusions in Section 7. 

2. Named Entity Recognition 
Named entity recognition is the task of locating references to entities in texts and 

classifying them into predefined categories. NER is a crucial component of any text min-
ing application, as has been repeatedly shown in many different domains, from fashion 
industry intelligence [12] to legal document mining [13], although it has proven especially 
relevant in biomedical applications [6,14–17], where the categories of entities to extract 
include chemical terms [18,19], pharmacological substances [20,21], other drug-related in-
formation such as dosages or adverse events [22], diseases [23], problems, tests and treat-
ments [24,25], or genes and proteins [15], among others. From an implementation point of 
view, NER has been linked since its inception with the sequence labeling paradigm. 

2.1. NER as a Sequence Labeling Task 
Sequence labeling (also known as sequence tagging) is a type of classification task 

where the input is a sequence of observed values and the output is a categorical label for 
each member of the sequence. Sequence labeling has long been used to model and solve 
NLP tasks, where the input values are typically words, although, depending on the task, 
they can also be smaller units like individual characters [26] or larger units like sentences 
[27]. To a certain extent, in the context of NLP, sequence labeling can be considered anal-
ogous to a software-engineering design pattern [28], since it provides a template of how 
to solve a problem that can be reused and adapted to different tasks. 

It is worth clarifying that sequence labeling models are not to be confused with se-
quence-to-sequence (seq2seq) models [29]. The main difference is that while sequence la-
beling models assign exactly one categorical label to each word of the sentence, seq2seq 
models generate another sequence as output, which can be of arbitrary length. This means 
that seq2seq models can be used for tasks that do not fit the sequence labeling framework, 
such as machine translation. Unfortunately, it also means that seq2seq models require 
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more complex architectures to run (with the use of neural attention being a must) and are 
significantly slower. 

Part-of-Speech (PoS) tagging is probably the most archetypical example of sequence 
labeling applied to NLP, because the task itself is defined as assigning one label (a part of 
speech, such as verb or noun) to each element (word) in a sequence. Thus, any implemen-
tation of PoS tagging could be said, by definition, to be performing a form of sequence 
labeling, although pioneering implementations [30] were task-specific (as well as lan-
guage- and tagset-specific), since they were based on handwritten rules. However, more 
modern approaches feature trainable models that learn the correspondence between 
words and tags in context as a supervised learning problem, and thus are instantiations 
of true generic sequence labeling models, applied to the particular task of PoS tagging. 
These include early statistical taggers [31], trainable rule-based taggers [32], Hidden Mar-
kov Model (HMM) taggers [33], maximum-entropy taggers [34] and, lately, deep learning 
approaches [35]. 

Chunking, sometimes referred to as shallow parsing, was incorporated into the se-
quence labeling paradigm in the mid 90s. This task consists in finding relevant phrases 
(typically, verb, noun and/or prepositional phrases) in a text. While early approaches were 
ad hoc [36], the problem was reformulated as a tagging problem by Ramshaw and Marcus 
[37], who introduced an encoding scheme called IOB (or BIO) tagging. In this approach 
each word is assigned a tag “I”, “O” or “B” depending on whether it occurs “Inside,” 
“Outside,” or at the “Beginning” of a chunk. Since then, most approaches to chunking, 
including machine learning approaches [38] and more recent deep learning approaches 
[39], have used the IOB tagging scheme or variants of it. 

Advances in machine learning (and in particular, new architectures for sequence la-
beling) have made it possible to apply the pattern to a wider range of tasks. In this line, 
after the introduction of Conditional Random Fields (CRF) [40] and the averaged percep-
tron [41], sequence labeling was applied to model a broader spectrum of problems. In 
sentiment analysis, Choi et al. [42] used a CRF architecture for opinion source extraction, 
while Jakob and Gurevych [43] did so for opinion target extraction. In shallow discourse 
parsing, Ghosh et al. [44] used a sequence labeling model to extract arguments, given dis-
course connectives; and in question answering, Yao et al. [45] presented the first sequence 
labeling approach to answer extraction. All of these approaches obtained competitive re-
sults at their time and were based in IOB tagging or variants thereof. With a different kind 
of encoding, Frazee [46] applied a CRF architecture to semantic role labeling, predicting 
argument labels directly (and empty labels for words that did not play the role of argu-
ments). Similarly, language identification in code-switching texts was addressed by Sik-
dar and Gambäck [47] using a CRF architecture where each word was directly tagged with 
its corresponding language. On a different note, the task of extractive summarization was 
also addressed as a sequence labeling task by Shen et al. [48]. In this case, the elements of 
the input sequence are sentences rather than words and the output labels are binary, rep-
resenting whether each sentence is chosen to be part of the summary or not. 

NER is closely related to chunking, in the sense that the goal is to extract relevant 
segments of words in a text (although the nature of those segments changes), and the con-
cept of IOB tagging can also be applied. Therefore, it is not surprising that sequence label-
ing approaches to NER, based on variants of IOB tagging, have been popular from early 
years and that they have followed the general evolution of sequence labeling architectures 
outlined above. This way, early approaches used HMM [49] followed by techniques like 
Maximum Entropy (MaxEnt) [50], CRF [51], Support Vector Machines (SVM) [17], and 
Structural Support Vector Machines (S-SVM) [52]. Lately, following the general trends in 
NLP, deep learning techniques have become popular [53,54], including approaches like 
Convolutional Neural Networks (CNN) [55], Capsule Networks [56,57], Bidirectional 
Long Short-Term Memory (BiLSTM) [58], or the combination of BiLSTM and CRF [59]. 
Neural techniques also made it viable to define sequence labeling models on characters 
instead of words. Misawa et al. [60] used an architecture combining Long Short-Term 
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Memory (LSTM), CNN, and CRF for a NER task in Japanese where entities do not neces-
sarily follow word boundaries. Krantz et al. [26] used a similar architecture combining 
LSTM, CNN, and CRF for language-agnostic syllabification. 

2.2. Shared Tasks and Data Sets for NER 
Since its inception, the NER task has been characterized by the gradual development 

of collaborative annotated resources that were materialized mainly through the organiza-
tion of shared tasks. In these competitive evaluation workshops, the organizers provide 
annotated data sets for training in advance, which are used by participating teams from 
all over the world to fine-tune their systems. Later, test data sets are released for a limited 
period of time before the official results are provided by the participants. After a shared 
task has finished, these data sets are used to evaluate emerging new systems, thus ena-
bling comparison between systems. A list of the most relevant shared tasks on NER fol-
lows: 
• MUC-6 (https://cs.nyu.edu/cs/faculty/grishman/muc6.html), the Sixth Message Un-

derstanding Conference, held in 1995 [1,61]. Its data set consists of news from the 
Wall Street Journal. 

• MUC-7 (https://www-nlpir.nist.gov/related_projects/muc/index.html), the Seventh 
Message Understanding Conference, held in 1998 [62]. This time the data set consists 
of news from the New York Times. 

• SemEval (https://www.aclweb.org/anthology/venues/semeval/), the series of Inter-
national Workshops on Semantic Evaluation, an evolution of the Evaluation exercises 
for Word Sense Disambiguation (SensEval), has held shared tasks since 1998 [63] on 
text mining in several languages. Usually, some of the tasks proposed each year in-
volve the use of NER. 

• IREX (https://nlp.cs.nyu.edu/irex/index-e.html), an information retrieval and infor-
mation extraction contest for the Japanese language [64]. The CRL NE, IREX General, 
and WEB NE Japanese data sets are derived from IREX. 

• CoNLL-2002 Shared task on Language-Independent Named Entity Recognition 
(https://www.clips.uantwerpen.be/conll2002/ner/) [65]. The Spanish data are a col-
lection of newswire articles made available by the Spanish EFE News Agency. The 
Dutch data set consists of four editions of the Belgian newspaper De Morgen. 

• CoNLL-2003 Shared Task on Language-Independent Named Entity Recognition 
(https://www.clips.uantwerpen.be/conll2003/ner/) [66]. The data sets consist of Reu-
ters news stories in English and Frankfurter Rundshau news in German. 

• ACE (https://www.ldc.upenn.edu/collaborations/past-projects/ace), the Automatic 
Content Extraction events, held from 1999 to 2008 [67]. Throughout these years, their 
datasets covered languages such as English, Spanish, Arabic, and Chinese. 

• BioCreAtIvE (https://biocreative.bioinformatics.udel.edu/), Critical Assessment of 
Information Extraction systems in Biology. This series of shared tasks started in 2004 
[68] in order to develop a community-wide effort for evaluating text mining and in-
formation extraction systems applied to the biological domain. Several NER data sets 
have been derived from this shared task series, namely, BC5CDR [69], a corpus for 
the evaluation of biomarker chemical–disease relations from the biomedical litera-
ture in support of biocuration, new drug discovery, and drug safety surveillance; and 
the BC2GM (https://github.com/spyysalo/bc2gm-corpus) corpus for gene mention 
tagging. 

• BioNLP Shared Tasks (https://2019.bionlp-ost.org/), dedicated to computational 
tasks in the field of biomedical text mining, with editions in 2009 [70], 2011 [71], 2013 
[72], 2016 [73], and 2019 [74]. The first editions were supported by the GENIA project 
(http://www.geniaproject.org/) [75]. 
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• N2c2 (https://n2c2.dbmi.hms.harvard.edu/), the National NLP Clinical Challenges, 
continuation of the i2b2 (Informatics for Integrating Biology & the Bedside) chal-
lenges (https://www.i2b2.org/NLP/DataSets/Main.php) held since 2006. Some of 
these shared tasks on clinical text mining involve the use of NER. 

• ShARe/CLEF eHealth Evaluation Lab (https://sites.google.com/site/clefehealth/da-
tasets), a series of shared tasks that started in 2013 [76], focused on NLP and Infor-
mation Retrieval for clinical care, including several tracks on NER. 

• GermEval (https://germeval.github.io/tasks/), the series of evaluation campaigns that 
focus on NLP for the German language, with the 2014 edition dedicated to NER [77]. 

• W-NUT (http://noisy-text.github.io/), the Workshops on Noisy User-generated Text, 
held annually since 2015 [78], are focused on noisy text found in social media, online 
reviews, crowdsourced data, web forums, clinical records, and language learner es-
says. Except for a break in 2018–2019, all editions feature a NER-based shared task. 

• CCKS (http://www.cipsc.org.cn/sigkg/?cat=9), the series of China Conferences on 
Knowledge Graph and Semantic Computing, resulting from the merger in 2016 [79] 
of the former Chinese Knowledge Graph Symposium (CKGS) and Chinese Semantic 
Web and Web Science Conference (CSWS). CCKS include shared tasks on Chinese 
NER for several domains (http://sigkg.cn/ccks2020/?page_id=69; 
http://www.ccks2019.cn/?page_id=62; http://ceur-ws.org/Vol-2242/; http://ceur-
ws.org/Vol-1976/; https://dblp.org/db/conf/ccks/ccks2016.html). 

• BSNLP (http://bsnlp.cs.helsinki.fi/bsnlp-2019/shared_task.html), the series of Balto-
Slavic Natural Language Processing shared tasks on multilingual NER. The data set 
of 2017 [80] comprised texts in Croatian, Czech, Polish, Russian, Slovak, Slovene and 
Ukrainian; while the 2019 edition [81] was dedicated to Bulgarian, Czech, Polish, and 
Russian. 

• VNER 2018 (https://vlsp.org.vn/vlsp2018/eval/ner), VLSP 2018 Shared Task on NER 
for Vietnamese [82]. Texts in the data set were collected from online newspaper web-
sites. 

• NSURL-2019 (http://nsurl.org/tasks/task-7-named-entity-recognition-ner-for-farsi/), 
the First International Workshop on NLP Solutions for Under Resourced Languages, 
included among its shared tasks one dedicated to NER for Farsi (Task 7) [83]. 

• IberLEF (https://sites.google.com/view/iberlef2020), the series of Iberian Languages 
Evaluation Forum workshops formerly known as IberEval (Workshops on Evalua-
tion of Human Language Technologies for Iberian Languages), and dedicated to NLP 
in Iberian Languages, has always paid attention to entity recognition and processing. 
At first they proposed tasks on abbreviation recognition and resolution in the Span-
ish biomedical domain [84,85] and, after that, they decided to include tracks on Por-
tuguese NER [86], Spanish NER [87] and Spanish eHealth Knowledge Discovery [88]. 

In addition, the following are some of the data sets that are routinely used by NER 
researchers for evaluation purposes: 
• GENIA (http://www.geniaproject.org/genia-corpus) [89], a collection created to sup-

port the development and evaluation of information extraction and text mining sys-
tems for the molecular biology domain. It contains subcorpora annotated with PoS, 
constituency (phrase structure), terms, events, relations, and coreferences. 

• OntoNotes (https://www.gabormelli.com/RKB/OntoNotes_Corpus) [90], a data set 
on English, Chinese, and Arabic resulting from the project with the same name. Apart 
from named entities from several domains (weblogs, news, talk shows, broadcast, 
Usenet newsgroups, and conversational telephone speech) it also contains structural 
information (constituency trees and predicate argument structure) and shallow se-
mantics (word sense linked to an ontology and coreference). There are five releases 
of OntoNotes, from 1.0 to 5.0. 
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• CHEMDNER (https://biocreative.bioinformatics.udel.edu/resources/biocreative-
iv/chemdner-corpus/) [91], a corpus for evaluating text mining and information ex-
traction systems applied to the chemical domain. 

• NCBI disease corpus (https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DIS-
EASE/) [92], a collection of PubMed abstracts fully annotated at both the mention and 
concept levels. 

• Species-800 (https://github.com/shreyashub/BioFLAIR/tree/master/data/ner/s800), a 
corpus of PubMed abstracts that contains identified organism mentions. 

• Europeana NER corpora for Dutch, French, and German (https://github.com/Euro-
peanaNewspapers/ner-corpora) [93], with manually annotated historical newspa-
pers. 

• LeNER-Br (https://cic.unb.br/~teodecampos/LeNER-Br/), a data set for Named Entity 
Recognition in Brazilian legal texts [94]. 

• Swedish NER corpus (https://www.kaggle.com/andreasklintberg/swedish-ner-cor-
pus) with 8000 sentences in Swedish annotated for NER. 

2.3. Evaluation Measures for NER Systems 
Three measures are usually considered for evaluating NER systems: precision, recall, 

and F-measure. In the context of NER, the entities labeled in the test data set are consid-
ered as ground truth. To compute the metrics, we must consider the numbers of true pos-
itives (TP), false positives (FP), and false negatives (FN) with respect to said ground truth, 
where: 
• A true positive is counted for each entity that is returned by a NER system and also 

appears in the ground truth; 
• A false positive is counted for each entity that is returned by a NER system but does 

not appear in the ground truth; 
• A false negative is counted for each entity that is not returned by a NER system but 

does appear in the ground truth. 
Precision, P, refers to the percentage of a system’s results that correspond to correctly-

recognized entities and is computed as indicated below in Equation (1). Recall, R, refers 
to the percentage of the total entities in a text that are successfully recognized by a system 
and is computed as indicated in Equation (2). Finally, F-measure combines precision and 
recall by means of their harmonic mean, as shown in Equation (3). 

TPP
TP FP

=
+

, (1)

TPR
TP FN

=
+

, (2)

2- P RF measure
P R
× ×=

+
. (3)

Nowadays, NER is far from being a solved task. Even in a well-studied and resource-
rich language like English, state-of-the-art approaches obtain F-measures around 80% in 
some biomedical data sets (e.g., 80.5% on GENIA [95] (Yu et al., 2020) or 77.1% on the 
ShARe/CLEF eHealth Task 1 Corpus [96]). As such, NER is currently a highly active topic 
in NLP research, the subject of frequent shared tasks with a high number of participants. 
Examples from 2020 are the Spanish CAMTEMIST-NER shared task, with 23 participating 
teams, featured in IberLEF 2020 [97]; or the English W-NUT-2020 Task 1, with 13 partici-
pants, featured in EMNLP 2020 [98]. 
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3. Syntax and Semantic Parsing as Building Blocks for NLP Applications 
In spite of some claims about the possibility that large language models could make 

explicit syntax redundant, which are based on artificial benchmarks [99], the trend in real 
applications is just the opposite. As a matter of fact, in recent years, improvements in syn-
tactic parsing models have made the constructions resulting from parsing more and more 
commonly used in various downstream tasks like machine translation [100], opinion min-
ing [101], relation and event extraction [102], question answering [103], or summarization 
[104]. On the semantic side, semantic parsers have increased their accuracy to the point of 
becoming useful in applications like summarization [105] or machine translation [106]. 

In order to make successful use of parsing in NLP applications, we need (1) efficient 
and accurate parsing models, and (2) an adequate way of using the obtained structures. 

3.1. Recent Advancements in Parsing Efficiency and Accuracy 
The availability of more powerful machine learning architectures has greatly im-

proved syntactic parsing accuracy, both in dependency parsing [107,108] and in constitu-
ency parsing [109]. Moreover, parsing algorithms have been subject to a process of sim-
plification, which has resulted in models that are simpler, more generic and easier to tune: 
• In the context of dependency parsing, transition-based parsers that used to require rich 

feature models to attain an acceptable accuracy with pre-neural models [110] have be-
come viable with a minimal set of generic features by using BiLSTMs [111]. 

• Mildly non-projective exact-inference parsers that were barely implementable in prac-
tice due to the complexity of features needed [112] have become viable, too [113]. 

• In the case of constituency parsing, transition-based parsers with simple features [114] 
and reduced transition sequences [115] now obtain good results. 
On the semantic side, semantic parsers have also begun to have sufficient accuracy 

to prove useful in NLP applications [105,106], hinting that semantic representations can 
be as versatile (or more so) as syntax, as long as accuracy becomes good enough. 

3.2. Recent Advancements in the Representation of Parsing Results 
The use of the linguistic structures resulting from parsing in NLP applications is not 

a trivial problem at all. This is in contrast to PoS tagging, for which the fact that PoS tags 
are simply a sequence of one tag per word, provides a highly standard and universal way 
of using such information in any neural NLP model: in the form of embeddings that are 
plugged as input to the network [116]. This makes it extremely easy to plug them into 
different models, regardless of architecture, or to try embeddings of different kinds of 
linguistic units (e.g., fine or coarse-grained PoS tags, lemmata, etc.). However, with con-
structions resulting from parsing, the situation is very different: since syntactic trees (un-
like PoS tags) are structures that go beyond the linear order of the words in the sentence, 
it is not so obvious how they can be used in a way that takes full advantage of syntax 
while being modular and pluggable, i.e., not conditioning the rest of the model or requir-
ing special resources. 

A classic way to use parsing is to extract features from parse trees (such as individual 
dependencies from dependency trees) and inject them into the application model, as Joshi 
and Penstein-Rosé [117] or Vilares et al. [118] do with dependency trees for opinion min-
ing. While this approach is relatively simple and pluggable, it does not really make full 
use of syntax as it is applying a lossy encoding of dependency trees into “bags of depend-
encies,” without regard for the overall structure or the relations between dependencies. 
In a much more involved approach, Socher et al. [119] syntactically annotated a sentiment 
treebank to then train a recursive neural network that learns how to apply semantic com-
position for sentiment analysis. Although this does exploit syntax more fully, it has no 
modularity as it requires training a special ad hoc model, apart from requiring an ad hoc 
corpus where tree nodes are annotated with sentiment, a rarely available resource. Vilares 
et al. [120] forwent the need of special corpora by just computing a dependency parse of 
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the target sentence and then applying handwritten rules to extract polarity from it, but, 
again, this is an ad hoc approach and cannot be used to improve existing models or to try 
different syntactic representations. In a similar way, several recent papers have used tree-
specific encoders like graph convolutional networks [101]; but these are specialized mod-
els that are not easily pluggable. 

Recently, a new paradigm of parsing as sequence labeling has arisen; in it, parsing is 
performed by encoding syntactic trees into sequences of one categorical label per word. 
This paradigm has been successfully applied to both constituency parsing [121,122] and 
dependency parsing [123], or even both at once [124]. Apart from providing very fast and 
environmentally friendly [125] parsers for practical applications, this approach makes it 
possible to plug syntax into models in the same generic way as for PoS tags, as well as 
opening possibilities for multitask learning with other sequence labeling tasks, such as 
NER. Unfortunately, to the best of our knowledge, no sequence labeling approach is avail-
able for semantic parsing at the moment. 

4. Parsing for NER 
As explained before, syntactic information has been shown to be an important asset 

to improve the accuracy of various NLP tasks. Thus, it is to be expected that such infor-
mation can be used to improve NER as well as related tasks like relation extraction. How-
ever, existing approaches to integrate syntax into NER systems have been affected by the 
difficulty of using syntax in downstream applications in a pluggable way, as we discussed 
in the previous section. In the same line as before, some models use syntactic information 
extracted from parse trees as a feature for standard sequence labeling NER architectures. 
However, these strategies are limited to using very specific syntactic features and cannot 
take advantage of the whole parse tree. On the other end of the spectrum, there are models 
that do use complete parse trees, but have to resort to ad hoc, complex architectures to do 
so. The most relevant recent references for both approaches are discussed in the rest of 
this section. 

4.1. Syntactic Information as a Feature for Sequence Labeling NER 
Sasano and Kurohashi [126] presented a system for Japanese NER based on an SVM 

classifier that uses several types of structural information, such as that obtained from the 
head verb of a sentence by means of a syntactic parser and the surface case of the phrase 
that includes a target entity. To deal with head verbs that do not appear in the training 
data, case frames are introduced. Case frames describe what kinds of cases each verb can 
have and what kinds of nouns can fill a case slot. They are learned from a corpus of five 
hundred million sentences: firstly, entities are detected by a primitive NER system that 
uses only local features; secondly, case frames are constructed from the sentences contain-
ing such entities. Thus, if a given threshold percentage of the examples of a case are clas-
sified as pertaining to a certain entity class, the corresponding label is attached to the case. 
By using all structural information, the performance improves significantly for all data 
sets, which means that structural information improves the performance of Japanese NER. 
In particular, syntactic features improve the performance not dramatically, but consist-
ently and independently from the data set. This result also shows that case frame features 
are general features that can be effective for data from different domains. 

In their work [127], Ling and Weld described FIGER, a fine-grained entity recognizer 
that identifies references to entities in natural language text and labels them with appro-
priate tags from a set of 112 tags. The training set for these tags is created by exploiting 
the anchor links in Wikipedia text to automatically label entity segments with suitable 
tags. A CRF model is trained for segmentation, identifying the boundaries of each text 
segment that mentions an entity. An adapted perceptron algorithm is used as the final 
classifier in charge of assigning tags to the detected entities, considering both word-based 
features (including unigram and bigram features) and syntax-based features such as the 
head of the segment containing the entity and the syntactic dependency of said head. 
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Compared to standard NER systems, FIGER shows a higher performance. An error anal-
ysis detects that most errors originate from noise in the training data. It is worth mention-
ing that training data were created without resorting to parsing. 

The proposed approach of Luo et al. [128] to chemical NER is based on a neural net-
work. The base classifier is an attention-based bidirectional LSTM with a conditional ran-
dom field layer, thus trying to leverage document-level global information obtained by 
an attention mechanism to enforce tagging consistency across multiple instances of the 
same token in a document. This approach achieves better performance on chemical com-
pound and drug name recognition than other state-of-the-art methods, while requiring 
little feature engineering. In particular, the authors investigated the effect of linguistic fea-
tures such as PoS tags and chunks obtained through shallow parsing. The baselines take 
word and character embeddings as inputs to the model while the additional features are 
introduced into the deep learning classifier as additional embeddings. Without the atten-
tion mechanism, the highest F-score is achieved when only the chunking embedding is 
added, the main reason being that some entity boundary errors can be revised by the 
chunking information. When only the PoS embedding is added, the model achieves a 
smaller improvement. However, with the attention mechanism in place, the contribution 
of these features to the performance of the model is negligible. 

Although these studies demonstrate the potential benefits of incorporating syntactic 
information, they are limited in either treating noisy syntactic information as gold refer-
ences for training their taggers, or using direct concatenation to combine that information 
with context information without weighing it with respect to its contribution to the NER 
task. Tian et al. [129] tried to find a better way to incorporate syntactic information into 
deep learning models for NER. For this purpose, they built BioKMNER, a NER model for 
biomedical texts based on Key-Value Memory Networks (KVMN) [130]. They parsed bi-
omedical text sentences to extract three types of morpho-syntactic information: PoS tags, 
syntactic constituents, and dependency relations. The KVMN weighs the corresponding 
syntactic information (values) according to the importance of context features (keys) and 
combines the weighted syntactic information with the output of the encoder Bidirectional 
Encoder Representations from Transformers for Biomedical Text Mining (bioBERT) [131]. 
Finally, the decoder receives the combined embedding and tags the input sequence ac-
cordingly. BioKMNER outperforms baselines without memories and achieves new state-
of-the-art results on four biomedical data sets. 

The system by Tian et al. [129] is based on bioBERT [131], a pre-trained biomedical 
language model designed for biomedical text mining tasks. It is worth remarking that 
there is a recent trend in end-to-end NLP systems that use powerful pre-trained language 
models with huge parameter spaces based on transformers to solve a variety of tasks, as 
in the case of the Bidirectional Encoder Representations from Transformers (BERT) [132] 
or Generative Pre-trained Transformer 3 (GPT-3) models [133]. It is important to highlight 
that it has been shown that explicit syntactic information helps these pre-trained trans-
former models [134], despite the fact that some authors have questioned the use of explicit 
syntax in these settings [99]. 

4.2. Using Complete Parse Trees for NER 
In the case of Shi et al. [135], they proposed to use a statistical parsing technique to 

simultaneously identify biomedical named entities and extract subcellular localization re-
lations for bacterial proteins. In their approach, sentences are automatically annotated by 
a statistical parser. Then, the constituency parse trees are decorated with annotations on 
relevant protein, bacterium, and location named entities; and annotations on the path link-
ing related entities in the parse tree of each sentence. Experiments with purely supervised 
learning showed that in order to be effective, the model required a large curated set to 
minimize the sparse data problem. Unfortunately, domain-specific annotated corpora are 
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rare and expensive, so the authors decided to add noisy texts (i.e., with automatically la-
beled named entities and relations) to the training set. By doing this, the system reaches a 
competitive performance. 

Finkel and Manning [136] proposed a joint model of context-free parsing and named 
entity recognition, based on a discriminative CRF-based constituency parser. They found 
that combining parsing and NER improves performance on both tasks, the joint model 
producing an output that has consistent parse structure and named entity spans and, 
moreover, is also doing a better job at both tasks than separate models with the same fea-
tures. This joint model proceeds as follows. In a first phase, the set of constituency trees 
from the OntoNotes 2.0 data set is modified. As named entities correspond to phrasal 
nodes, the labels of such phrasal nodes and their descendants in each parse tree are aug-
mented with the type of those named entities. Some additional manual modifications are 
required, such as removing final periods from the entity annotation, flattening nested 
noun phrases, and moving adjectives from nested noun phrases into the main noun 
phrase. The augmented nodes give place to extra copies of the source grammar where 
named entities are taken into account. This representation will even be able to handle 
nested named entities in a natural way, although the data set used for evaluation does not 
contain such entities. This grammar is used by a CRF-based parser that considers features 
over both the parse rules and the named entities. In the testing phase, the parser analyzes 
each sentence, and the named entities are extracted from the parse tree. As we can see, 
this approach differs from the others described in this article in that NER is not considered 
as a sequence labeling task but rather as a by-product of a parsing process. One of the 
practical difficulties of this approach is that the size of the corpus employed is much 
smaller than the treebanks on which parsers are routinely trained, at least for English. 

Instead of constituency parsers, Jie et al. [137] proposed a NER model guided by a 
dependency parser. The basis of this approach is that named entities tend to be covered 
by single or multiple adjacent dependency arcs, since certain internal structures are ex-
pected to exist for most named entities that convey semantically meaningful information. 
As a result, words inside each named entity typically do not have dependencies with 
words outside the entities, except for certain words such as head words, which often have 
incoming arcs from outside words. Thus, the authors derive a semi-Markov CRF model 
by restricting the space of all possible combinations of entities to those that strictly contain 
only valid spans, where a valid span either consists of a single word, or is a word sequence 
that is covered by a chain of dependency arcs where no arc is covered by another. This 
model performs competitively with respect to conventional linear CRF-based models and 
exhibits the same time complexity. 

Finally, Yu et al. [95] introduced a method to handle both flat and nested named en-
tities by adopting ideas from the biaffine dependency parsing model [107]. The particu-
larity of this system is that instead of using the information resulting from the parsing 
process, it uses the parsing process to derive the plausibility of each of the possible entities 
found in the text, without actually building a parse tree. Toward this aim, the authors use 
a biaffine model on top of a multilayer BiLSTM to assign scores to all possible spans in a 
sentence. The results are used to rank the candidate spans by their scores and return the 
top-ranked spans that comply with constraints for flat or nested NER. The experiments 
show that the system improves over state-of-the-art results on three nested NER corpora 
and five flat NER corpora. The biaffine mapping and the BERT embedding used as input 
to the BiLSTM are the components that contribute most to the accuracy of the system. 

5. Discussion 
Parsing makes it possible to represent the structure of a text and has been repeatedly 

shown to be useful for improving NER accuracy. Table 1 compiles a summary of the main 
characteristics of the most relevant NER systems that make use of information derived 
from parsing. As we explained in the previous section, existing approaches have been 
limited by the difficulty of integrating hierarchical information such as a parse tree into a 
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task that is linear in nature. Thus, either they make limited use of such syntactic infor-
mation [128,129], or they develop ad hoc architectures that result in more complex, less 
generic, and less efficient models [95,136,137]. What we know for sure is that the use of 
information from parsers is beneficial but, since they have been tested on different data 
sets, it is difficult to determine which of those approaches for incorporating parsing infor-
mation is more effective in general terms. Paradoxically, this issue stems from the success 
of the NER task: In recent years NER has been applied to so many domains that it has 
been necessary to create at least one data set for each of them, which has the pernicious 
effect that the research community has dispersed, with researchers creating systems to 
work effectively in a particular domain. 

Table 1. Main characteristics of named entity recognition (NER) systems using parsing information. 

Reference Language Base Classifier Parsing Information Data Set Performance 
F-Measure

Sasano and Kuro- 
hashi (2008) [126] 

Japanese SVM Head verb, case frames 
CRL NE 89.40 

IREX General 87.71 
WEB NE 71.03 

Ling and Weld 
(2012) [127] 

English CRF+Perceptron
Syntactic dependencies, 

head of phrases 
Ad hoc from Wikipe-

dia 
53.20 

Luo et al. (2018) 
[128] 

English 
Atten-

tion+BiLSTM+CRF 
Chunks 

CHEMDNER 91.14
BC5CDR 92.57

Tian et al. 
(2020) [129] English BioBERT

Syntactic constituents, de-
pendency relations 

BC2GM 85.67
BC5CDR (only chemi-

cal entities) 
94.22 

NCBI-disease 90.11
Species-800 76.33

Shi et al. (2007) [135] English 
Statistical context-free 

parser 
Phrase structure (constitu-

ency) trees 
Ad hoc from MED-

LINE 
83.20 

Finkel and Manning 
(2009) [136] English 

CRF context-free 
grammar parser 

Phrase structure (constitu-
ency) trees 

English portion of On-
toNotes 2.0 

74.91 to 88.11 1 

Jie et al. (2017) [137] English Semi-Markov CRF Dependency trees 

English portion of On-
toNotes 5.0 

79.4 2

SemEval-2010 Task 1 
OntoNotes 75.102 

English corpus 

Yu et al. (2020) [95] 
English, German, 
Spanish, Dutch 

BiLSTM 
Biaffine dependency pars-

ing model 

English OntoNotes 3 91.3 
CoNLL 2003 (EN) 93.5 
CoNLL 2003 (DE) 4 86.4 
CoNLL 2003 (ES) 90.3 
CoNLL 2003 (NL) 93.7 

ACE 2004 86.7 
ACE 2005 85.4 

GENIA 80.5
1 Results are provided for six portions of the English part of OntoNotes. 2 Results reported in this table correspond to 
predicted dependency trees. 3 Supposedly OntoNotes 2.0, although the version is not clearly identified in the article. 4 On 
a revised version with more consistent annotations, F = 90.3. 

At this point, a promising line of research that has not been tried yet is to integrate 
the hierarchical information provided by parsing processes into a linear setting by casting 
syntactic parsing itself as a sequence labeling task [121,123]. Until recently, full syntactic 
parsing was considered infeasible in practice within the sequence labeling framework: 
While it was theoretically possible to cast it as sequence labeling, learning algorithms like 
averaged perceptron or CRF were not powerful enough to achieve practical results. As an 
example, Spoustová and Spousta [138] presented a sequence labeling approach to depend-
ency parsing as early as 2010, but they reported accuracies 5%–10% behind the state of the 
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art of the time. Thus, while their work was an interesting exploration and proof of concept, 
it could hardly be considered a competitive system. It was not until recent years, with the 
popularization of dense vector representations of linguistic units (embeddings [139]) and 
the use of recurrent neural networks (especially BiLSTMs) to enrich these representations 
with context information [140], that generic sequence labeling models started being capa-
ble of doing full syntactic parsing. In a pioneering work, Gómez-Rodríguez and Vilares 
[121] introduced an encoding to represent any constituency tree for a sentence of length n 
as a sequence of n labels. Several sequence labeling architectures were tried, showing that 
BiLSTMs were capable of achieving good parsing accuracy (and very fast speeds) where 
simpler architectures failed. In later work [123], the same approach was tried with de-
pendency parsing, exploring four different ways to cast the problem as sequence labeling 
and achieving competitive accuracies with two of them, including the one where 
Spoustová and Spousta [138] had previously obtained impractical results using pre-neural 
techniques. 

This new paradigm of parsing as sequence labeling will be usable not only to inte-
grate deep syntactic trees with NER, but to do it in such a way that we will effectively use 
the full syntactic information without needing to forgo the standard sequence labeling 
architectures of NER. Thus, we will obtain NER systems that are fast, scalable, and easily 
integrable with upstream tasks while also boosting accuracy, thanks to the use of deep 
syntax. This approach can also be extended to semantic parsing, which generates meaning 
representations that go beyond syntax trees. However, this will require a reduction of se-
mantic parsing to sequence labeling. 

Some NER systems, notably [129], resort to pre-trained language models. End-to-
end-models based on large pre-trained language models suffer from high computational 
costs, with the associated environmental costs [141]; reduced inclusivity in multilingual 
settings (e.g., GPT-3 is currently only available for English, and training it for a new lan-
guage has been estimated to cost more than USD 4 million with current hardware [142]); 
as well as lack of explainability, which can be provided with parsing. In this respect, a 
practical characteristic of sequence labeling approaches to parsing is that they are more 
efficient than seq2seq models. For example, the single-core speeds of the seq2seq constit-
uent parsers of Fernández-González and Gómez-Rodríguez [143], albeit optimized for 
speed, are an order of magnitude slower than those of sequence labeling constituent 
parsers [121,122]. This is compounded by the fact that sequence labeling is much easier to 
parallelize, so that the differences can be even larger in multi-core settings. For all these 
reasons, and while recognizing the usefulness of end-to-end setups and large pre-trained 
models, non-end-to-end setups that use intermediate tasks explicitly are still preferable if 
we wish to achieve efficient, green, inclusive, and explainable systems, and will continue 
to be in the foreseeable future. 

6. Related Work 
There have been a number of articles reviewing the state of the art in NER in a given 

moment, but none of them had the use of information derived from parsing processes as 
their main focus, as in this case. 

The work of Nadeau and Sekine [144], for example, is a classical reference that re-
views 15 years of research in NER, from 1991 to 2006. They detected that early systems 
were making use of handcrafted rule-based algorithms, while modern systems most often 
resorted to machine learning techniques. Handcrafted systems provided good perfor-
mance at a relatively high system engineering cost. For machine learning systems, a pre-
requisite was the availability of a large collection of annotated data, a rather rare resource 
and limited in domain and language coverage. Indeed, most of the work at that point had 
concentrated on limited domains and textual genres such as news articles and web pages. 
The application of syntactic information was limited to the use of fixed syntactic construc-
tions for finding candidate named entities and to the use of syntactic relations (e.g., sub-
ject–object) to discover more accurate contextual evidence around entities. 
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Regarding the reviews carried out in the last decade, Vazquez et al. [145] studied the 
achievements in the recognition of chemical entities mentioned in text, the determination 
of their chemical structures, and the identification of relationships between chemicals and 
other entities. It must be taken into account that chemicals may be referenced in docu-
ments in a variety of forms: systematic nomenclatures, common names, trade names, da-
tabase identifiers, or IUPAC International Chemical Identifier strings; with different types 
of names having different word morphologies. They classified NER approaches into three 
categories: dictionary-based, morphology-based, and context-based, the latter category 
being the only one that involves some form of syntactic parsing guided by manual rules, 
in contrast to current parsing techniques based on treebank data. At that time, hand-made 
context-free rules had been proposed to describe a kind of “chemical language.” Shallow 
or template-based parsing had also been considered to mine relationships for entities such 
as proteins and genes, pharmacogenomics entities, or drug and cytochrome proteins. As 
a result, parsing was limited most of the time to determining certain components of sen-
tences (e.g., subjects), which were then used in a template matching strategy. NER for the 
chemical domain was reviewed again a few years later by Eltyeb and Salim [146]. They 
considered a different classification of NER systems in this domain: dictionary-based, 
rule-based, machine learning-based, and hybrid approaches. Rule-based systems used a 
set of hand-made rules to extract the names of entities. The handcrafted models consisted 
of pattern-based and context-based rules, the latter involving, as before, the use of shallow 
parsing. 

In the biomedical domain, Campos et al. [147] analyzed machine learning tools for 
NER in this context, where it is used to detect entities such as gene, protein, drug, and 
disease names. It is a complex domain, where many entities are descriptive (e.g., “normal 
thymic epithelial cells”), several entity names can share one head noun, one entity name 
can have several forms of spelling, and ambiguous abbreviations are frequently used, 
among other phenomena. The authors detected that three approaches were used at that 
time to deal with this variety in entity forms: rule-based approaches for names with a 
strongly defined orthographic and morphological structure, dictionary-based approaches 
for closely defined vocabularies of names (e.g., diseases and species), and machine learn-
ing approaches for highly dynamic vocabularies of names exhibiting strong variability 
(e.g., genes and proteins). They focused their survey on the latter and they detected that 
shallow syntactic parsing benefits pre-processing of gene and protein names, particularly 
when using chunking to divide the text into syntactically correlated parts of words (e.g., 
noun or verb phrases). They also observed that, given that these linguistic units only pro-
vide a local analysis of some tokens in the sentence, additional information can be derived 
from dependency parsing to collect the relations between a wider range of tokens. NER 
for the biomedical domain was reviewed again several years later by Alshaikhdeeb and 
Ahmad [148]. At that time, most methods were relying on machine learning techniques 
and they reviewed some features that could be used in such techniques, such as morpho-
logical features, dictionary-based features, lexical features and distance-based features, 
but not syntactic features. 

A different perspective was taken by Marrero et al. [149], who analyzed the evolution 
of NER from a theoretical and practical point of view, arguing that the task was actually 
far from being solved and showing the consequences for the development and evaluation 
of tools. They focused their review around what the task of NER is in itself, analyzing the 
different meanings of the term named entity. They also analyzed the resources and metrics 
that were used to solve the task and to measure the results attained, concluding that sys-
tems were overfitting to the training corpora, leading to serious limitations in the external 
validity of NER evaluations, given that systems did not perform well in general but for a 
particular user and document type. 

Another context-specific review work is that of Shaalan [150], who studied the fea-
tures of common tools used for NER in the Arabic language. This language poses partic-
ular challenges for NER, such as the use of the Arabic script; the co-existence of Classic 
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Arabic, Modern Standard Arabic, and Colloquial Arabic dialects; lack of capitalization; 
lack of uniformity in writing styles; optional short vowels; and agglutination. As a sample 
of the complexity of the task in this language, we have that two mentions to entities may 
appear in one word, given that a pronominal can appear as a suffix pronoun to a nominal. 
One of the primary approaches for Arabic NER was based on handcrafted local grammat-
ical rules. The structure of Arabic sentences allows a named entity to appear anywhere in 
the sentence and at different distances from lexical triggers, which complicated the struc-
ture of the rules. This led to using base-phrase chunks such as noun phrases and verb 
phrases, identified by means of shallow syntactic parsing. The other primary approach 
was based on machine learning classifiers, where syntactic information could also be used, 
giving rise to hybrid approaches. 

Goyal et al. [151] presented the status of NER techniques developed by the research 
community and identified the issues and challenges (nested entities, ambiguity, annota-
tion of training data, lack of resources) as well as factors (language, text genre, text do-
main) affecting NER performance, all of them to be considered when designing these sys-
tems. They found that earlier systems were most often based on handcrafted rules, includ-
ing rules based on syntactic–lexical patterns to identify and classify named entities. These 
systems are highly efficient because they exploit the properties of language-related 
knowledge, employing domain-specific features to obtain sufficient accuracy. However, 
they are quite expensive, domain-specific and non-portable. In the case of NER systems 
based on machine learning, some of them consider chunks of text detected by means of 
shallow parsing as features. 

Névéol et al. [152] offered an overview of clinical NLP for non-English languages. In 
the case of NER, they found that, similar to approaches for English, the methods for other 
languages are rule-based, statistical, or a combination of both. Although they did not con-
sider parsing to be one of the most widely used resources, they cited it as one of the NLP 
techniques used in NER systems. In the clinical domain, NER essentially focuses on two 
types of entities: personal health identifiers in the context of clinical document de-identi-
fication and clinical entities such as diseases, signs/symptoms, procedures or medications, 
as well as their context of occurrence: negation, assertions, and experiencer (i.e., whether 
the entities are relevant to the patient or a third party such as a family member or organ 
donor). They claimed that negation may be easily adapted between languages of the same 
family that express negation using similar syntactic structures. 

Yadav and Bethard [54] presented a survey of deep neural network architectures for 
NER and contrasted them with previous approaches to NER based on feature engineering 
and other supervised or semi-supervised learning algorithms. With respect to the use of 
parsing and syntax, they only briefly cited that shallow syntactic knowledge can be useful 
as a feature for unsupervised NER systems. 

More recently, Hahn and Oleynik [153] reported the latest developments in medical 
NER for two selected semantic classes, diseases and drugs (or medications), and relations 
between them. They focused their review on the methodological paradigm shift from 
standard machine learning techniques to deep learning. They concluded that deep-learn-
ing-based approaches outperform classical machine learning ones but, at the same time, 
small-sized and access-limited corpora create intrinsic problems for data-greedy deep 
learning. The same applies to special linguistic phenomena of medical sublanguages that 
have to be overcome by adaptive learning strategies. No mention was made of the use of 
syntactic information beyond indicating that clinical notes and reports often exhibit syn-
tactically ill-formed, telegraphic language. 

Finally, Li et al. [53] reviewed in detail existing deep learning techniques for NER, 
systematically categorizing approaches based on a taxonomy along three axes: distributed 
representations for input, context encoder, and tag decoder. Although several deep artifi-
cial neural network models try to represent long-distance dependencies that have a clear 
syntactic component, they do so in an implicit way, through a sequential process in which 
relevant information is remembered and propagated so that the representation associated 
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with a given word can include non-local information coming from a different location in 
the sentence. However, some systems resort to information derived by parsers, such as 
dependency roles, to build complex distributed representations of words. Minaee et al. 
[154] presented a comprehensive survey of deep learning models for other classification 
tasks. 

IOB is the most widely used labeling scheme in NER, but it is not the only one. Re-
cently, Zhong et al. [155] proposed several constituent-based (The term constituent in Con-
stituent-based tagging scheme does not refer to constituents in the sense of constituency pars-
ing, but to each of the elements that constitute (are part of) a named entity or time expres-
sion) labeling schemes instead of the traditional IOB positional labeling scheme. More 
specifically, they define a TOMN scheme to model temporal expressions, where T refers 
to Time token, M to Modifier, N to Numeral and O to Outside time expressions; and an 
UGTO scheme to model named entities, where U refers to Uncommon word, G to General 
modifier, T to Trigger word and O to Outside named entities. Experimental results show 
that CRF-based methods using these constituent-based labeling schemes perform equally 
to, or more effectively than, representative state-of-the-art methods on time expression 
extraction and named entity extraction. 

7. Conclusions 
Written text is the fundamental element by which human beings record their ideas, 

desires, aspirations, creations, and the events that occur in their environment; it is ulti-
mately the main medium by which knowledge is transmitted. A clear example of this can 
be found in articles published in scientific journals like this one. The huge amount of text 
that is currently generated on a daily basis makes its manual examination unfeasible, mak-
ing it necessary to create automatic tools, that is, NLP tools, to extract knowledge from it. 
NER emerges as a basic NLP task for this purpose. 

NER is a difficult task. Probably because of this, most systems have opted for an ap-
proach based on sequence labeling that makes a limited use of the inherent structure of 
text. Although this approach has not been able to solve the NER task, it has managed to 
yield systems with sufficient performance to be applicable in practice. In particular, recent 
developments in neural architectures have allowed us to increase sequence labeling per-
formance in NLP tasks [27,35,156–158], in part due to the use of contextualized embed-
dings from language models like Embeddings from Language Models (ELMo) or BERT 
[159,160]. However, to continue improving the performance of NER systems, it is neces-
sary to incorporate the information provided by the techniques that can analyze, process, 
and elaborate the structural information of sentences—in other words, parsing. Through-
out this article we have shown how NER systems that use parsing information manage to 
improve over the results of those that do not use it, and how improvements in parsing 
techniques in recent years allow a smoother and more efficient incorporation of structural 
information to NER systems. 

Regarding the future evolution of the integration of syntactic and semantic infor-
mation in NER systems, we advise to cast parsing itself as a sequence labeling task, mak-
ing it much more straightforward to integrate with NER. This way, we will be able to use 
complete syntactic trees, while at the same time not having to resort to non-standard ar-
chitectures and retaining the simplicity, genericity, and efficiency of a sequence labeling 
architecture for NER. This approach can also be used to apply the parsing component of 
a NER system in a multilingual setting, thanks to the availability of Universal Dependen-
cies (https://universaldependencies.org/) (UD), a unified parsing framework that cur-
rently supports 111 languages, with 32 more to be added soon. For example, this approach 
can be applied to incorporate a parsing component to a NER system in Arabic [161], Per-
sian [162], or French [163] by training a parser with the UD treebank for each of those 
languages. Moreover, the strategy used in [120,164] to build multilingual sentiment anal-
ysis systems can be applied toward building truly multilingual NER systems. 
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Finally, we would like to point out what we consider to be the main challenges for 
the successful application of parsing in NER systems: 
• A standard framework for NER resources. Although the availability of UD makes it 

possible to have a multilingual parsing component with common annotation criteria 
across languages, the same is not the case for the rest of components of a NER system. 
The NER community needs to move in this direction, which will also facilitate the 
creation of truly multi-domain NER systems. 

• Larger data sets. The deep learning techniques that currently represent the state of 
the art in both parsing and NER require the largest possible data sets to exploit their 
full potential. 

• Semantic parsing. The latest developments in syntactic parsing indicate that the pro-
posed approach is fast enough to be applicable in large-scale NER systems, as well 
as accurate enough to provide useful information for the task. It is still unknown 
whether similar performance can be achievable with respect to semantic parsing, alt-
hough the prospects are encouraging. 
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