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ABSTRACT. Tree Adjoining Grammar (TAG) is a useful formalism for describing the syntactic
structure of natural languages. In practice, a large part of wide coverage TAGs is formed
by trees that satisfy the restrictions imposed by Tree Insertion Grammar (TIG), a simpler for-
malism. This characteristic can be used to reduce the practical complexity of TAG parsing,
applying the standard adjunction operation only in those cases in which the simpler cubic-time
TIG adjunction cannot be applied. A major obstacle to this task is posed by the fact that si-
multaneous adjunctions are forbidden in TAG but they are allowed in TIG. In this article, we
describe several algorithms for mixed parsing of TAG and TIG: a first one forbidding simul-
taneous adjunctions, a second one allowing this kind of adjunctions, and a third one which
extends the second one to preserve the correct prefix property.

RÉSUMÉ. La Grammaire d’Arbres Adjoints (TAG) est un formalisme utile pour décrire la struc-
ture syntaxique des langues naturelles. En pratique, la plupart des TAG à large couverture
contiennent des arbres qui satisfont les restrictions imposées par la Grammaire d’Insertion
d’Arbres (TIG), qui est un formalisme plus simple. Cette caractéristique peut être employée
pour réduire la complexité pratique de l’analyse TAG, en appliquant l’opération d’adjonction
standard seulement dans les cas où l’adjonction TIG, plus simple, ne peut pas être appliquée.
L’un des plus grands obstacles à cette tâche réside dans le fait que les adjonctions simultanées
sont interdites en TAG mais elles sont permises en TIG. Dans cet article, nous décrivons plu-
sieurs algorithmes pour l’analyse mixte de TAG et de TIG : 1) celui qui interdit les adjonctions
simultanées ; 2) celui qui permet ce type d’adjonction ; et 3) celui qui étend le deuxième afin de
préserver la propriété du préfixe correcte.

KEYWORDS: parsing, tree adjoining grammar, tree insertion grammar.

MOTS-CLÉS : analyse syntaxique, grammaires d’arbres adjoints, grammaires d’insertion
d’arbres.

TAL. Volume 44 - n◦ 3/2003, pages 41 à 65



42 TAL. Volume 44 - n◦ 3/2003

1. Introduction

Tree Adjoining Grammar (TAG) [JOS 75, JOS 97, ABE 00] and Tree Insertion
Grammar (TIG) [SCH 95] are grammatical formalisms that make use of a tree-based
operation called adjunction. However, adjunctions are more restricted in the case of
TIG than in the case of TAG, which has important consequences with respect to the
set of languages generated and the worst-case complexity of parsing algorithms:

– TAG generates tree adjoining languages, a strict superset of context-free lan-
guages, and the complexity of parsing algorithms is in O(n6) for time and in O(n4)
for space with respect to the length n of the input string.

– TIG generates context-free languages and can be parsed in O(n3) for time and
in O(n2) for space.

– The correct prefix property [SCH 91] is preserved by TIG parsers without in-
creasing their computational cost. In the case of TAG, preserving this property in-
volves an increase in the space complexity from O(n4) to O(n5) [NED 99].

Although the powerful adjunction provided by TAG makes it useful for describing
the syntax of natural languages, most of the trees involved in wide coverage grammars
like XTAG [DOR 94] do not make use of such operation, and so a large portion of
XTAG is in fact a TIG [SCH 95]. As the full power of a TAG parser is only put
into practice in adjunctions involving a given set of trees, to apply a parser working
in O(n6) time complexity when most of the work can be done by a O(n3) parser
seems to be a waste of computing resources. In this article, we propose to improve the
practical efficiency of TAG parsers by applying mixed parser strategies that takes the
best of both worlds: those parts of the grammar that correspond to a TIG are managed
in O(n3) time and O(n2) space complexity, and only those parts of the grammar
involving the full kind of adjunction present in TAG are managed in O(n6) time and
O(n4) space complexity (O(n5) space complexity in the case of parsers satisfying the
correct prefix property).

This article may be outlined as follows. The remainder of this section is devoted
to describe the notation used in the article. In section 2 we present a mixed parsing
algorithm in which at most one auxiliary tree is allowed to be adjoined at a given node.
This algorithm is modified in section 3 to allow simultaneous adjunctions. New mod-
ifications are considered in section 4 in order to preserve the correct prefix property.
The computational complexity of these algorithms is analyzed in section 5 and their
practical efficiency is studied in section 6. Section 7 presents final conclusions.

1.1. Tree Adjoining Grammars

Formally, a TAG is a 5-tuple G = (VN , VT , S, I,A), where VN is a finite set of
non-terminal symbols, VT a finite set of terminal symbols, S ∈ VN the axiom of the
grammar, I a finite set of initial trees and A a finite set of auxiliary trees. I ∪ A

is the set of elementary trees. Internal nodes of elementary trees are labeled by non-
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Figure 1. Adjunction operation

terminals and leaf nodes by terminals or the empty string ε, except for just one leaf
per auxiliary tree (the foot) which is labeled by the same non-terminal used as the
label of its root node. The path in an auxiliary tree from the root node to the foot
node is called the spine of the tree. New trees are derived by adjunction: let γ be an
elementary or derived tree containing a node N γ labeled by A and let β be an auxiliary
tree whose root and foot nodes are also labeled by A. Then, the adjunction of β at the
adjunction node Nγ is obtained by excising the subtree of γ with root N γ , attaching
β to Nγ and attaching the excised subtree to the foot of β. We can add constraints on
the nodes of elementary trees so the adjunction on a node can be mandatory, optional
or forbidden. The string language of a TAG G is defined as the set of yields of all
the trees derived from initial trees rooted by the axiom of the grammar [JOS 97]. We
illustrate the adjunction operation in Fig. 1, where we show a simple TAG with two
elementary trees: an initial tree rooted S and an auxiliary tree rooted VP. The derived
tree obtained after adjoining the VP auxiliary tree at the node labeled by VP located
in the initial tree is also shown.1

1.2. Tree Insertion Grammars

We can consider the set A as formed by the union of the sets AL, containing
left auxiliary trees in which every nonempty frontier node2 is to the left of the foot
node, AR, containing right auxiliary trees in which every nonempty frontier node is
to the right of the foot node, and AW , containing wrapping auxiliary trees in which
nonempty frontier nodes are placed both to the left and to the right of the foot node.
Figure 2 shows three derived trees resulting from the adjunction of a wrapping, left
and right auxiliary tree, respectively. We can note from that picture that the trees
derived by the adjunction of left an right auxiliary trees are simpler than those derived

1. The operation of substitution can also be defined for TAG, but it does not increase the genera-
tive power of the formalism. The incorporation of substitution to the parsing algorithms defined
in this article is straightforward and does not modify their complexity.
2. An empty frontier node is a leaf node labeled by the empty string ε.
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Figure 2. Adjunction of left, right and wrapping auxiliary trees
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Figure 3. Example of TIG grammar

by wrapping auxiliary trees. It is just this evidence which introduces the notion of
Tree Insertion Grammars.

Given an auxiliary tree, those nodes placed on the spine are called spine nodes
and those nodes placed to the left (resp. right) of the spine are called left nodes (resp.
right nodes). The set ASL ⊆ AL (resp. ASR ⊆ AR) of strongly left (resp. strongly
right) auxiliary trees is formed by trees in which no adjunction is permitted on right
(resp. left) nodes and only strongly left (resp. right) auxiliary trees are allowed to
adjoin on spine nodes. We denote by A

′ the set A − (ASL ∪ ASR). Given the set
A of a TAG, we can determine the set ASL as follows: firstly, we determine the set
AL examining the frontier of the trees in A and we set ASL := AL; secondly, we
eliminate from ASL those trees that permit adjunctions on nodes to the right of their
spine; and thirdly, we iteratively eliminate from ASL those trees that allow adjoining
trees in A − ASL on nodes of their spine. ASR is determined in an analogous way.

In essence, a TIG is a restricted TAG where auxiliary trees must be either strongly
left or strongly right and adjunctions are not allowed in root and foot nodes of auxiliary
trees. There is also a different approach between both formalism with respect to the
way adjunctions are performed. In contrast with TAG, where only an auxiliary tree
can be adjoined at a node, TIG enables simultaneous adjunctions, i.e., the adjunction
of several auxiliary trees on a node of a tree. We illustrate this point in Figure 3 where
a TIG grammar with an initial tree α, a left auxiliary tree βL and a right auxiliary tree
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βR is depicted. When simultaneous adjunction of βL and βR is allowed at the root
node of α, the TIG language is a∗bc∗, i.e., an optional sequence of a’s followed by a
b and followed by an optional sequence of c’s. In contrast, if simultaneous adjunction
was not allowed, we could not combine the left and right auxiliary trees, and the
language generated would be the union of the strings ab and bc.3

1.3. Notation for parsing algorithms

We will describe parsing algorithms using Parsing Schemata, a framework for
high-level descriptions of parsing algorithms [SIK 97]. A parsing system for a gram-
mar G and string a1 . . . an is a triple 〈I,H,D〉, with I a set of items which represent
intermediate parse results, H an initial set of items called hypothesis that encodes the
sentence to be parsed, and D a set of deduction steps that allow new items to be de-
rived from already known items. Deduction steps are of the form η1,...,ηk

ξ
cond, meaning

that if all antecedents ηi of a deduction step are present and the conditions cond are
satisfied, then the consequent ξ should be generated by the parser. A set F ⊆ I of
final items represent the recognition of a sentence. A parsing schema is a parsing
system parameterized by a grammar and a sentence.

Given an input string a1 . . . an, the hypothesis of all parsing systems described in
this article will be defined in the standard way:

H =
{

[a, i − 1, i] | a = ai, 1 ≤ i ≤ n
}

In order to describe the parsing algorithms for tree-based formalisms, we must
be able to represent the partial recognition of elementary trees. Parsing algorithms
for context-free grammars usually denote partial recognition of productions by dotted
productions. We can extend this approach to the case of tree-based grammars by
considering each elementary tree γ as formed by a set of context-free productions
P(γ): a node Nγ and its children Nγ

1 . . . Nγ
g are represented by a production Nγ →

Nγ
1 . . . Nγ

g . Thus, the position of the dot in the tree is indicated by the position of the
dot in a production in P(γ). The elements of the productions are the nodes of the tree.

To simplify the description of parsing algorithms we consider an additional pro-
duction > → R

α for each α ∈ I and the two additional productions > → R
β and

F
β → ⊥ for each β ∈ A, where R

β and F
β correspond to the root node and the foot

node of β, respectively. After disabling > and ⊥ as adjunction nodes the generative
capability of the grammars remains intact. We introduce also the following notation:
given two pairs (p, q) and (i, j) of integers, (p, q) ≤ (i, j) is satisfied if i ≤ p and
q ≤ j and given two integers p and q we define p ∪ q as p if q is undefined and as q if
p is undefined, being undefined in other case.

We use β ∈ adj(Nγ) to denote that an auxiliary tree β may be adjoined at node
Nγ of the tree γ. If adjunction is not mandatory at N γ then nil ∈ adj(Nγ) where

3. We remind you that TIG forbids adjunction at the root nodes of auxiliary trees.
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Figure 4. Graphical representation of the items in the set IMix1

nil /∈ I ∪ A is a dummy symbol. If adjunction is not allowed at N γ then {nil} =
adj(Nγ). We also use label(Nγ) to denote the label of a node Nγ belonging to an
elementary tree γ.

2. Mixed parsing without simultaneous adjunctions

In this section we define a parsing system
�

Mix1
= 〈IMix1

,H,DMix1
〉 corre-

sponding to an Earley-like TAG parser merged with an Earley-like TIG parser, in
which the adjunction of strongly left and strongly right auxiliary trees will be man-
aged by specialized deduction steps, the rest of adjunctions will be managed with the
classical deduction steps included in most TAG parsers [ALO 99]. In this parsing al-
gorithm, simultaneous adjunctions are not allowed. Thus, we follow the standard TAG
definition of adjunction. With slight modifications, this parsing system corresponds to
the parsing algorithm shown in [ALO 02].

2.1. Items

The items in the set IMix1
are of the form [Nγ → δ • ν, i, j | p, q | adj] such that

Nγ → δν ∈ P(γ), γ ∈ I ∪A, 0 ≤ i ≤ j ≤ n, (p, q) = (−,−) or (p, q) ≤ (i, j), and
adj ∈ {true, false}. The two indices with respect to the input string i and j indicate
the portion of the input string that has been spanned from δ (see figure 4). If γ ∈ A, p
and q are two indices with respect to the input string that indicate that part of the input
string recognized by the foot node of γ if it is a descendant of δ. In other case they
are undefined, which is denoted by p = q = −. The last boolean component adj is
needed to manage mandatory adjunction: adj = true if and only if an adjunction has
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taken place at Nγ , otherwise adj = false. Therefore, this kind of items satisfy one of
the following conditions:

1) γ ∈ A
′, (p, q) 6= (−,−) and δ 6= ε spans ai+1 . . . ap F

γ aq+1 . . . aj

2) δ 6= ε, (p, q) = (−,−) and δ spans the string ai+1 . . . aj .

3) δ = ε, (p, q) = (−,−), i = j, adj = false. The last boolean component
indicates that any tree has been adjoined at N γ .

4) δ = ε, (p, q) = (−,−), adj = true and there exists a β ∈ ASL such that
β ∈ adj(Nγ) and R

β spans ai+1 . . . aj (i.e., β has been adjoined at Nγ). In this
case, i and j indicate the portion of the input string spanned by the left auxiliary tree
adjoined at Nγ .

In this algorithm, the last boolean component of items is also used to control that
at most one adjunction has been performed on a node. A value of true indicates that
an adjunction has taken place on the node N γ and therefore further adjunctions on
the same node will be forbidden. A value of false indicates that no adjunction was
performed on that node. In this case, during future processing this item can play the
role of the item recognizing the excised part of an elementary tree to be attached to
the foot node of a right auxiliary tree. As a consequence, only one adjunction can take
place on a node, as is usual for TAG parsers.

2.2. Deduction steps

The set of deduction steps is formed by the following subsets:

DMix1
= DInit

Mix1
∪ DScan

Mix1
∪ Dε

Mix1
∪ DPred

Mix1
∪ DComp

Mix1
∪

DAdjPred
Mix1

∪ DFootPred
Mix1

∪ DFootComp
Mix1

∪ DAdjComp
Mix1

∪

DLAdjPred
Mix1

∪ DLAdjComp
Mix1

∪ DRAdjPred
Mix1

∪ DRAdjComp
Mix1

∪ DLRFoot
Mix1

The parsing process starts by creating the items corresponding to productions hav-
ing the root of an initial tree as right-hand side and the dot in the leftmost position of
the right-hand side:

DInit
Mix1

=
[> → •Rα, 0, 0 | −,− | false]

α ∈ I ∧ S = label(Rα)

A set of deductive steps in DPred
Mix1

and DComp
Mix1

traverse each elementary tree while
steps in DScan

Mix1
and Dε

Mix1
scan input symbols and the empty symbol, respectively:

DPred
Mix1

=
[Nγ → δ • Mγν, i, j | p, q | adj]

[Mγ → •υ, j, j | −,− | false]

nil ∈ adj(Mγ) ∨
(∃β ∈ ASL ∪ ASR, β ∈ adj(Mγ))
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DComp
Mix1

=

[Nγ → δ • Mγν, i, j | p, q | adj],
[Mγ → υ•, j, k | p′, q′ | adj′]

[Nγ → δMγ • ν, i, k | p ∪ p′, q ∪ q′ | adj]

with (nil ∈ adj(Mγ) ∧ adj′ = false) ∨
(∃β ∈ A, β ∈ adj(Mγ) ∧ adj′ = true)

DScan
Mix1

=

[Nγ → δ • Mγν, i, j | p, q | adj],
[a, j, j + 1]

[Nγ → δMγ • ν, i, j + 1 | p, q | adj]
a = label(Mγ)

Dε
Mix1

=
[Nγ → δ • Mγν, i, j | p, q | adj]

[Nγ → δMγ • ν, i, j | p, q | adj]
ε = label(Mγ)

The rest of steps are in charge of managing adjunction operations. If a strongly
left auxiliary tree β ∈ ASL can be adjoined at a given node Mγ , a step in DLAdjPred

Mix1

starts the traversal of β. When β has been completely traversed, a step in DLAdjComp
Mix1

starts the traversal of the subtree corresponding to M γ and sets the last element of the
item to true in order to forbid further adjunctions on this node.

DLAdjPred
Mix1

=
[Mγ → •υ, i, i | −,− | false]

[> → •Rβ , i, i | −,− | false]
β ∈ adj(Mγ) ∧ β ∈ ASL

DLAdjComp
Mix1

=

[Mγ → •υ, i, i | −,− | false],
[> → R

β•, i, j | −,− | false]

[Mγ → •υ, i, j | −,− | true]
β ∈ ASL ∧ β ∈ adj(Mγ)

If a strongly right auxiliary tree β ∈ ASR can be adjoined at a given node Mγ ,
when the subtree corresponding to this node has been completely traversed, a step in
DRAdjPred

Mix1
starts the traversal of the tree β. When β has been completely traversed,

a step in DRAdjComp
Mix1

updates the input positions spanned by Mγ taking into account
the part of the input string spanned by β, and sets the last element of the item to true
in order to forbid further adjunctions on this node.

DRAdjPred
Mix1

=
[Mγ → υ•, i, j | p, q | false]

[> → •Rβ , j, j | −,− | false]
β ∈ ASR ∧ β ∈ adj(Mγ)

DRAdjComp
Mix1

=

[Mγ → υ•, i, j | p, q | false],
[> → R

β•, j, k | −,− | false]

[Mγ → υ•, i, k | p, q | true]
β ∈ ASR ∧ β ∈ adj(Mγ)
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No special treatment is given to the foot node of strongly left and right auxiliary
trees and so, it is simply skipped by a step in the set DLRFoot

Mix1
.

DLRFoot
Mix1

=
[Fβ → •⊥, j, j, adj]

[Fβ → ⊥•, j, j, adj]
β ∈ ASL ∪ ASR

A step in DAdjPred
Mix1

predicts the adjunction of an auxiliary tree β ∈ A
′ at a node of

an elementary tree γ and starts the traversal of β. Once the foot of β has been reached,
the traversal of β is momentary suspended by a step in DFootPred

Mix1
, which re-takes the

subtree of γ which must be attached to the foot of β. At this moment, there is no infor-
mation available about the node in which the adjunction of β has been performed, so
all possible nodes are predicted. When the traversal of a predicted subtree has finished,
a step in DFootComp

Mix1
re-takes the traversal of β continuing at the foot node. When the

traversal of β is completely finished, a deduction step in DAdjComp
Mix1

checks if the sub-
tree attached to the foot of β corresponds with the adjunction node. The traversal of
Mγ (and therefore the adjunction of β at Mγ) is finished by a step in DComp

Mix1
, taking

into account that p′ and q′ are instantiated if and only if the adjunction node is on
the spine of γ. It is interesting to remark that we follow the approach of [NED 99],
splitting the completion of an adjunction between DAdjComp

Mix1
and DComp

Mix1
.

DAdjPred
Mix1

=
[Nγ → δ • Mγν, i, j | p, q | adj]

[> → •Rβ , j, j | −,− | false]
β ∈ A

′ ∧ β ∈ adj(Mγ)

DFootPred
Mix1

=
[Fβ → •⊥, k, k | −,− | false]

[Mγ → •υ, k, k | −,− | false]
β ∈ A

′ ∧ β ∈ adj(Mγ)

DFootComp
Mix1

=

[Fβ → •⊥, k, k | −,− | false],
[Mγ → υ•, k, l | p′, q′ | false]

[Fβ → ⊥•, k, l | k, l | false]
β ∈ A

′ ∧ β ∈ adj(Mγ)

DAdjComp
Mix1

=

[> → R
β•, j,m | k, l | false],

[Mγ → υ•, k, l | p′, q′ | false]

[Mγ → υ•, j,m | p′, q′ | true]
β ∈ A

′ ∧ β ∈ adj(Mγ)

The input string belongs to the language defined by the grammar if a final item in
the set F =

{

[> → R
α•, 0, n | −,− | false] | α ∈ I ∧ S = label(Rα)

}

is gen-
erated.

3. Mixed parsing with simultaneous adjunctions

Let us consider now that the trees in Figure 3 define a TAG. In this case, to generate
the language a∗bc∗ we need to perform several adjunctions of βL and βR at their root
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nodes. When parsing a sentence, derived trees are obtained using the expensive TAG
adjunction operation although we know the similarities of this TAG grammar with
a TIG grammar. In fact, allowing simultaneous adjunction and disabling adjunction
at the root nodes of βL and βR, the same set of derived trees would be produced
using the cheaper TIG adjunction operation. Whenever we have a sufficient number
of auxiliary trees with this property in a TAG grammar, we can exploit the benefits
of TIG adjunction allowing simultaneous adjunction and disabling the adjunctions
at the root nodes of auxiliary trees.4 For example, we can note that determiners or
adjectives are usually modeled in XTAG with left auxiliary trees but relative clauses
are modeled with right auxiliary trees. Whenever we need to modify a noun with both
determiners and relative clauses we can combine left and right auxiliary trees in this
way. The interesting point is that 93% of the spines of the auxiliary trees in XTAG
contain only the root and the foot node, so this modification can help to improve
parsing performance.

In this section we define a parsing system
�

Mix2
= 〈IMix2

,H,DMix2
〉 corre-

sponding to a mixed parsing algorithm for TAG and TIG in which simultaneous ad-
junctions are allowed on any node, with the following ordering: the adjunction of
strongly left auxiliary trees will take place before the adjunction of other types of
trees. This ordering has been established for compatibility with the definition of si-
multaneous adjunctions in TIG [SCH 95]. With slightly modifications, this parsing
system corresponds to the parsing algorithm shown in [ALO 03].

3.1. Items and deduction steps

Items in the set IMix2
have the same form than items in the set IMix1

. However,
given that more than one tree is allowed to be adjoined at a given node, the last boolean
component adj has true as value if and only if one or more adjunctions have taken
place at Nγ , otherwise adj = false. In particular, i and j will indicate the portion
of the input string spanned by the strongly left auxiliary trees adjoined at N γ if there
exists a sequence of strongly auxiliary trees that have been adjoined at N γ , δ = ε,
(p, q) = (−,−) and adj = true.

The set of deduction steps is formed by the following subsets:

DMix2
= DInit

Mix1
∪ DScan

Mix1
∪ Dε

Mix1
∪ DPred

Mix2
∪ DComp

Mix2
∪

DLAdjPred
Mix2

∪ DLAdjComp
Mix2

∪ DRAdjPred
Mix2

∪ DRAdjComp
Mix2

∪ DLRFoot
Mix1

∪

DAdjPred
Mix2

∪ DFootPred
Mix2

∪ DFootComp
Mix2

∪ DAdjComp
Mix2

∪ DComb
Mix2

4. Simultaneous adjuntion does not increase the generative capability of TAG due to the simul-
taneous adjunction of a set of auxiliary trees on a given node can be simulated by an adjunction
at that node followed by a sequence of (traditional, non simultaneous) adjunctions at the root
nodes of the auxiliary trees.
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The starting of the parsing process and the scanning of terminal symbols and the
empty string is performed as in

�
Mix1

. In contrast, prediction and completion are
performed differently: steps in DPred

Mix2
do not need to check any condition, while steps

in DComp
Mix2

must ensure that mandatory adjunction and forbidden adjunction constraints
(nil 6∈ adj(Mγ) and {nil} = adj(Mγ), respectively) are satisfied.

DPred
Mix2

=
[Nγ → δ • Mγν, i, j | p, q | adj]

[Mγ → •υ, j, j | −,− | false]

DComp

Mix2
=

[Nγ → δ • Mγν, i, j | p, q | adj],
[Mγ → υ•, j, k | p′, q′ | adj′]

[Nγ → δMγ • ν, i, k | p ∪ p′, q ∪ q′ | adj]

adj′ = true if nil 6∈ adj(Mγ)
adj′ = false if {nil} = adj(Mγ)

In left adjunctions, the value of the boolean component in the first antecedent item
of steps in DLAdjPred

Mix2
and DLAdjComp

Mix2
is not relevant. Simultaneous adjunctions of

several strongly left auxiliary trees on a node M γ is achieved by applying a pair of
steps DLAdjPred

Mix2
and DLAdjComp

Mix2
for each auxiliary tree.

DLAdjPred
Mix2

=
[Mγ → •υ, i, j | −,− | adj]

[> → •Rβ , j, j | −,− | false]
β ∈ adj(Mγ) ∧ β ∈ ASL

DLAdjComp
Mix2

=

[Mγ → •υ, i, j | −,− | adj],
[> → R

β•, j, k | −,− | false]

[Mγ → •υ, i, k | −,− | true]
β ∈ ASL ∧ β ∈ adj(Mγ)

A similar modification must be performed for deduction steps in charge of dealing
with right adjunctions. Simultaneous adjunctions of several strongly right auxiliary
trees on a node Mγ is achieved by applying a pair of steps DRAdjPred

Mix2
and DRAdjComp

Mix2

for each auxiliary tree.

DRAdjPred
Mix2

=
[Mγ → υ•, i, j | p, q | adj]

[> → •Rβ , j, j | −,− | false]
β ∈ ASR ∧ β ∈ adj(Mγ)

DRAdjComp
Mix2

=

[Mγ → υ•, i, j | p, q | adj],
[> → R

β•, j, k | −,− | false]

[Mγ → υ•, i, k | p, q | true]
β ∈ ASR ∧ β ∈ adj(Mγ)

The traversal of an auxiliary tree β ∈ A
′ that can be adjoined at a node Mγ is

started once the traversal of the production M γ → •υ has been started by a DPred
Mix2

step. This way we make possible to adjoin at M γ several strongly left auxiliary trees
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prior to β. Deduction steps in DFootPred
Mix2

, DFootComp
Mix2

and DAdjComp
Mix2

perform tasks

analogous to those of DFootPred
Mix1

, DFootComp
Mix1

and DAdjComp
Mix1

, respectively.

DAdjPred
Mix2

=
[Mγ → •υ, i, j | −,− | adj]

[> → •Rβ , j, j | −,− | false]
β ∈ A

′ ∧ β ∈ adj(Mγ)

DFootPred
Mix2

=
[Fβ → •⊥, k, k | −,− | adj]

[Mγ → •υ, k, k | −,− | false]
β ∈ A

′ ∧ β ∈ adj(Mγ)

DFootComp
Mix2

=

[Fβ → •⊥, l, l | −,− | adj],
[Mγ → υ•, l,m | p′, q′ | adj′]

[Fβ → ⊥•, l,m | l,m | adj]
β ∈ A

′ ∧ β ∈ adj(Mγ)

DAdjComp
Mix2

=

[> → R
β•, k, r | l,m | false],

[Mγ → υ•, l,m | p′, q′ | adj]

[Mγ → υ•, k, r | p′, q′ | true]
β ∈ A

′ ∧ β ∈ adj(Mγ)

Simultaneous adjunctions of several auxiliary trees in A
′ is achieved by using

the consequent item generated by a deduction step in DFootPred
Mix2

as antecedent of a

deduction step in DAdjPred
Mix2

to start the adjunction of an auxiliary tree β ′ ∈ A
′. When

the traversal of β′ has finished, a step in DFootComp
Mix2

re-takes the traversal of β at the
foot node. The process is repeated for each auxiliary tree which is to be simultaneously
adjoined.

The subset DComb
Mix2

is needed to put together the results corresponding to the simul-
taneous adjunctions of strongly left and wrapping auxiliary trees:

DComb
Mix2

=

[Mγ → •υ, i, j | −,− | true],
[Mγ → υ•, j, k | p, q | true]

[Mγ → υ•, i, k | p, q | true]

The input string belongs to the language defined by the grammar if a final item in
the set F =

{

[> → R
α•, 0, n | −,− | false] | α ∈ I ∧ S = label(Rα)

}

is gen-
erated.

3.2. An example of parsing

The behavior of this algorithm is illustrated by means of an example. Figure 5
shows the adjunction of a strongly-left auxiliary tree βl1, a strongly right auxiliary tree
βr1, two wrapping trees βw1 and βw2, a strongly-left auxiliary tree βl2 and a strongly
right auxiliary tree βr2, enumerated in a top-down view of the resulting derived tree,
which is obtained as follows:
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βr1:

βl1 :
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Figure 5. An example of simultaneous adjunctions

1) Once the adjunction node Mγ is reached at position j1, a step in DPred
Mix2

gener-

ates the item [Mγ → •υ, j1, j1 | −,− | false]. Then, a step in DLAdjPred
Mix2

is applied

in order to start the adjunction of βl1, which is finished by a step in DLAdjComp
Mix2

that
generates the item [Mγ → •υ, j1, j2 | −,− | true].

2) Strongly right auxiliary trees do not span anything to the left of their spine,
therefore no action is performed with respect to βr1 at this moment. Instead, a step
in DAdjPred

Mix2
predicts the adjunction of the auxiliary tree βw1, generating the item

[> → •Rβw1 , j2, j2 | −,− | false].

3) When the foot node of βw1 is reached at position j3, a step in DFootPred
Mix2

gen-

erates the item [Mγ → •υ, j3, j3 | −,− | false]. A deduction step in DAdjPred
Mix2

takes this item as antecedent and starts the adjunction of βw2, generating the item
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[> → •Rβw2 , j3, j3 | −,− | false]. When the foot node of βw2 is reached at posi-
tion j4, the traversal of γ is re-taken at Mγ by means of the application of a step in
DFootPred

Mix2
, generating the consequent item [Mγ → •υ, j4, j4 | −,− | false].

4) The adjunction of βl2 is then predicted by a deduction step in DLAdjPred
Mix2

. The

completion of this adjunction by a step in DLAdjComp
Mix2

gives as a result the genera-
tion of the item [Mγ → •υ, j4, j5 | −,− | true]. It is interesting to remark that
the ordering imposed on the trees involved in simultaneous adjunctions has been pre-
served due to the adjunctions of βl1 and βl2 have been completely performed before
the adjunction of other types of auxiliary trees.

5) βr2 is not considered at this moment. Once the subtree rooted by M γ has been
completely traversed, we get the item [Mγ → υ•, j4, k5 | −,− | true].

6) At this moment, a step in DRAdjPred
Mix2

starts the adjunction of βr2 by generating

the item [> → •Rβr2 , k5, k5 | −,− | false]. When a step in DRAdjComp
Mix2

performs the
completion of this adjunction, the item [Mγ → •υ, j4, k6 | −,− | true] is generated.

7) At this point, a step in DFootComp
Mix2

re-takes the traversal of βw2, generat-
ing the item [Fβw2 → ⊥•, j4, k6 | j4, k6 | false] which means that the subtree
corresponding to the adjunction node of this auxiliary tree is expected to span the
substring aj4+1 . . . ak6

. The complete traversal of βw2 is indicated by the item
[> → R

βw2•, j3, k7 | j4, k6 | false], which is used by a step in DAdjComp
Mix2

to generate
the item [Mγ → υ•, j3, k7 | −,− | true] indicating that the adjunction corresponding
to βw2 has been completed.

8) Then, a step in DFootComp
Mix2

is in charge of re-taking the traversal of βw1, gen-
erating the item [Fβw1 → ⊥•, j3, k7 | j3, k7 | false] which means that the subtree
corresponding to the adjunction node of this auxiliary tree is expected to span the sub-
string aj3+1 . . . ak7

. The adjunction of βw1 is finished by a step in DAdjComp
Mix2

, yielding
the item [Mγ → υ•, j2, k8 | −,− | true].

9) At this moment we have two possibilities in order to adjoin βr1:

a) A step in DComb
Mix2

combines the item [Mγ → •υ, j1, j2 | −,− | true] and
the item [Mγ → υ•, j2, k8 | −,− | true] in order to obtain the consequent item
[Mγ → υ•, j1, k8 | −,− | true]. Then, the adjunction of βr1 can be predicted
by a step in DRAdjPred

Mix2
. Once this strongly right auxiliary tree has been completely

traversed, the item [Mγ → υ•, j1, k9 | −,− | true] is generated by a a step in
DRAdjComp

Mix2
.

b) A step in DRAdjPred
Mix2

starts the adjunction of βr1. Once this auxiliary
tree has been completely traversed, the item [M γ → υ•, j2, k9 | −,− | true]

is generated by a step in DRAdjComp
Mix2

. Then, a step in DComb
Mix2

combines the items
[Mγ → •υ, j1, j2 | −,− | true] and [Mγ → υ•, j2, k9 | −,− | true] to obtain the
item [Mγ → υ•, j1, k9 | −,− | true].

This spurious ambiguity could be eliminated by imposing a more restrictive order-
ing of trees in simultaneous adjunctions: one possibility is to force that trees in A

′

should be adjoined first, then trees in ASL and finally trees in ASR; other possibility
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is to force that trees in ASL should be adjoined first, then trees in A
′ and finally trees

in ASR.

4. Mixed parsing preserving the correct prefix property

Parsers satisfying the correct prefix property guarantee that, as they read the input
string from left to right, the substrings read so far are valid prefixes of the language
defined by the grammar. More formally, a parser satisfies the correct prefix property if
for any substring a1 . . . ak read from the input string a1 . . . akak+1 . . . an guarantees
that there exists a string of tokens b1 . . . bm, where bi need not be part of the input
string, such that a1 . . . akb1 . . . bm is a valid string of the language.

In this section we define a parsing system
�

Mix3
= 〈IMix3

,H,DMix3
〉 corre-

sponding to a mixed parsing algorithm for TAG and TIG preserving the correct prefix
property and allowing simultaneous adjunctions on any node.

4.1. Items

We adapt the approach of Nederhof in [NED 99], adding a new position h to items
corresponding to auxiliary trees in A

′. This new element is used to indicate the po-
sition of the input string corresponding to the left-most extreme of the frontier of the
tree to which the dotted rule in the item belongs. To facilitate the understanding of
items, we consider IMix3

as formed by the union of the following six subsets:

I
(1a)
Mix3

: A subset with items of the form [−, Nγ → •υ, i, j | −,− | adj] such that
Nγ → υ ∈ P(γ), γ ∈ I∪ASL∪ASR, 0 ≤ i ≤ j, and adj ∈ {true, false}. The
last boolean component is used to control adjunctions: adj = true if and only
if a strongly left auxiliary tree has been adjoined at N γ , otherwise adj = false
and i = j. If an adjunction has taken place at N γ , i and j indicate the portion
of the input string spanned by the strongly left auxiliary trees adjoined at N γ .

I
(1b)
Mix3

: A subset with items of the form [−, Nγ → δ • ν, i, j | −,− | adj] such that
Nγ → δν ∈ P(γ), γ ∈ I ∪ ASL ∪ ASR, 0 ≤ i ≤ j, and adj ∈ {true, false}.
The two indices with respect to the input string i and j indicate the portion of
the input string spanned by δ. The boolean component adj is needed to manage
mandatory adjunction: adj = true if and only if one or more adjunctions have
taken place at Nγ , otherwise adj = false. It is interesting to remark that if
the auxiliary tree adjoined at Nγ belongs to ASL, the part of the input string
spanned by that tree is a prefix of ai+1 . . . aj .

I
(2a)
Mix3

: A subset with items of the form [h,Nβ → •υ, i, j | −,− | adj] such that
Nβ → υ ∈ P(β), β ∈ A

′, 0 ≤ h ≤ i ≤ j, and adj ∈ {true, false}. These
items are similar to items in the subset I(1a)

Mix3
, except for the fact that now the
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tree involved in each item belongs to A
′. Therefore, the value of adj has the

same meaning than for items in I
(1a)
Mix3

but now the value of h must be set to the
position of the input string at which the traversal of β was started. For trees in
A

′, the position h is needed to ensure the correct prefix property is preserved at
the time of predicting the subtrees pending from their foot nodes.

I
(2b)
Mix3

: A subset with items of the form [h,Nβ → δ • ν, i, j | −,− | adj] such that
Nβ → δν ∈ P(β), β ∈ A

′, 0 ≤ h ≤ i ≤ j, adj ∈ {true, false} and the foot
node of β is not a descendant of any node in δ. These items are similar to items
in the subset I(1b)

Mix3
, in particular the value of adj has the same meaning than for

items in I
(1b)
Mix3

.

I
(2c)
Mix3

: A subset with items of the form [h,Nβ → δ • ν, i, j | p, q | adj] such that
Nβ → δν ∈ P(β), β ∈ A

′, 0 ≤ h ≤ i ≤ j, adj ∈ {true, false}, (p, q) ≤ (i, j)
and the foot node of β is a descendant of a node in δ. The substring spanned by
δ is ai+1 . . . ap F

β aq+1 . . . aj . Thus, p and q are positions in the input string
indicating a discontinuity in the string recognized by β, due to the substring
ap+1 . . . aq should be spanned by the node at which the auxiliary tree β has
been adjoined. With respect to the boolean component, adj = true if some
auxiliary tree has been previously adjoined at N γ , otherwise adj = false.

I
(3)
Mix3

: A subset with items of the form [[Mγ → υ•, i, j | p, q | true]] such that
Mγ → υ ∈ P(β), β ∈ A

′, 0 ≤ i ≤ j and (p, q) = (−,−) or (p, q) ≤ (i, j).
These items are generated as a kind of intermediate items during the completion
of the adjunctions of auxiliary trees in A

′.

4.2. Deduction steps

The set of deduction steps is formed by the following subsets:

DMix3
=DInit

Mix3
∪ DScan

Mix3
∪ Dε

Mix3
∪ DPred1

Mix3
∪ DPred3

Mix3
∪ DComp

Mix3
∪

DLAdjPred
Mix3

∪ DLAdjComp
Mix3

∪ DRAdjPred
Mix3

∪ DRAdjComp
Mix3

∪ DLRFoot
Mix3

∪

DAdjPred
Mix3

∪ DFootPred
Mix3

∪ DFootComp
Mix3

∪ DAdjComp1

Mix3
∪ DAdjComp2

Mix3

The parsing process starts by creating the items corresponding to productions hav-
ing the root of an initial tree as right-hand side and the dot in the leftmost position of
the right-hand side:

DInit
Mix3

=
[−,> → •Rα, 0, 0 | −,− | false]

α ∈ I ∧ S = label(Rα)
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In order to preserve the correct prefix property, we must be very careful when
predicting the left-most child of a given node N γ . Thus, to generate the consequent
item in a deduction step corresponding to the subset DPred1

Mix3

DPred1

Mix3
=

[h,Nγ → •Mγν, i, j | −,− | adj]

[h,Mγ → •υ, j, j | −,− | false]

one of the following conditions must be satisfied:

1) Adjunction is forbidden at node Nγ and adj = false.

2) Adjunction is optional at node Nγ but any strongly left auxiliary tree can be
adjoined at this node. As a consequence, the value of adj should be false.

3) Adjunction is optional at node Nγ and some strongly left auxiliary tree can be
adjoined at this node or there exists some auxiliary trees belonging to A

′ ∪ ASR that
can be adjoined at Nγ . No restriction is applied on the value of adj.

4) Adjunction is mandatory at node Nγ but only strongly left auxiliary trees can
be adjoined at this node. The value of adj should be true to guarantee that at least one
adjunction has been performed at Nγ .

5) Adjunction is mandatory at node Nγ but any strongly left auxiliary tree can be
adjoined at this node. As a consequence, the value of adj should be false.

6) Adjunction is mandatory at node Nγ but there exists some auxiliary trees be-
longing to A

′ ∪ASR that can be adjoined at Nγ . The value of adj is not restricted at
this moment.

The rest of children of a given node Nγ are predicted as in the
�

Mix2
parsing

system:

DPred2

Mix3
=

[h,Nγ → δ • Mγν, i, j | p, q | adj]

[h,Mγ → •υ, j, j | −,− | false]
δ 6= ε

Once the children of Mγ have been completely traversed, a step in DComp
Mix3

DComp
Mix3

=

[h,Nγ → δ • Mγν, i, j | p, q | adj],
[h,Mγ → υ•, j, k | p′, q′ | adj′]

[h,Nγ → δMγ • ν, i, k | p ∪ p′, q ∪ q′ | adj]

should be applied, checking that one of the following conditions is satisfied:

1) Adjunction is mandatory at Mγ and adj′ = true.

2) Adjunction is forbidden at Mγ and adj′ = false.

3) Adjunction is optional at Mγ and therefore there are no restrictions on the value
of adj.

Input symbols and the empty string are recognized by deduction steps in DScan
Mix3

and Dε
Mix3

, respectively:
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DScan
Mix3

=

[h,Nγ → δ • Mγν, i, j | p, q | adj],
[a, j, j + 1]

[h,Nγ → δMγ • ν, i, j + 1 | p, q | adj]
a = label(Mγ)

Dε
Mix3

=
[h,Nγ → δ • Mγν, i, j | p, q | adj]

[h,Nγ → δMγ • ν, i, j | p, q | adj]
ε = label(Mγ)

If a strongly left auxiliary tree β ∈ ASL can be adjoined at a given node Mγ , a
step in DLAdjPred

Mix1
starts the traversal of β. When β has been completely traversed, a

step in DLAdjComp
Mix1

starts the traversal of the subtree corresponding to M γ and sets the
last element of the item to true in order to indicate that an adjunction has taken place
on this node. As in

�
Mix2

, simultaneous adjunctions of several strongly left auxiliary
trees on a node Mγ is achieved by applying a pair of steps DLAdjPred

Mix3
and DLAdjComp

Mix3

for each auxiliary tree.

DLAdjPred
Mix3

=
[h,Mγ → •υ, i, j | −,− | adj]

[−,> → •Rβ , j, j | −,− | false]
β ∈ adj(Mγ) ∧ β ∈ ASL

DLAdjComp
Mix3

=

[h,Mγ → •υ, i, j | −,− | adj],
[−,> → R

β•, j, k | −,− | false]

[h,Mγ → •υ, i, k | −,− | true]
β ∈ ASL ∧ β ∈ adj(Mγ)

If a strongly right auxiliary tree β ∈ ASR can be adjoined at a given node Mγ ,
when the subtree corresponding to this node has been completely traversed, a step in
DRAdjPred

Mix1
starts the traversal of the tree β. When β has been completely traversed,

a step in DRAdjComp
Mix1

updates the input positions spanned by Mγ taking into account
the part of the input string spanned by β, and sets the last element of the item to true
in order to indicate that an adjunction has taken place on this node. As in

�
Mix2

,
simultaneous adjunctions of several strongly right auxiliary trees on a node M γ is
achieved by applying a pair of steps DRAdjPred

Mix3
and DRAdjComp

Mix3
for each auxiliary

tree.

DRAdjPred
Mix3

=
[h,Mγ → υ•, i, j | p, q | adj]

[−,> → •Rβ , j, j | −,− | false]
β ∈ ASR ∧ β ∈ adj(Mγ)

DRAdjComp
Mix3

=

[h,Mγ → υ•, i, j | p, q | adj],
[−,> → R

β•, j, k | −,− | false]

[h,Mγ → υ•, i, k | p, q | true]
β ∈ ASR ∧ β ∈ adj(Mγ)
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The foot nodes of strongly left and right auxiliary trees are skipped by a step in the
set DLRFoot

Mix3
:

DLRFoot
Mix3

=
[−,Fβ → •⊥, j, j | −,− | adj]

[−,Fβ → ⊥•, j, j | −,− | adj]
β ∈ ASL ∪ ASR

A step in DAdjPred
Mix3

predicts the adjunction of an auxiliary tree β ∈ A
′ in a node

of an elementary tree γ, storing the position j at which the traversal of β was started.

DAdjPred
Mix3

=
[h,Mγ → •υ, i, j | −,− | adj]

[j,> → •Rβ , j, j | −,− | false]
β ∈ A

′ ∧ β ∈ adj(Mγ)

Once the foot of β has been reached, the traversal of β is momentary suspended by a
step in DFootPred

Mix3
, which re-takes the subtree of γ which must be attached to the foot

of β, checking the position at which the traversal of γ was suspended is compatible
with the position at which the traversal of β was started.

DFootPred
Mix3

=

[h,Mγ → •υ, i, j | −,− | adj]
[j,Fβ → •⊥, k, k | −,− | adj]

[h,Mγ → •υ, k, k | −,− | adj]
β ∈ A

′ ∧ β ∈ adj(Mγ)

When the traversal of Mγ has been completed, a step in DFootComp
Mix3

re-takes the traver-
sal of β continuing at the foot node, checking again that the position at which the
traversal of γ was suspended is compatible with the position at which the traversal of
β was started. These checkings are needed to guarantee the correct prefix property is
preserved at any moment.

DFootComp
Mix3

=

[h,Mγ → •υ, i, j | −,− | adj],
[j,Fβ → •⊥, l, l | −,− | adj],

[h,Mγ → υ•, l,m | p′, q′ | adj′]

[j,Fβ → ⊥•, l,m | l,m | adj]
β ∈ A

′ ∧ β ∈ adj(Mγ)

When the traversal of β is completely finished, a deduction step in DAdjComp1

Mix3
checks

if the subtree attached to the foot of β corresponds with the adjunction node. The

adjunction if finished by a step in DAdjComp2

Mix3
, taking into account that p′ and q′ are

instantiated if and only if the adjunction node is on the spine of γ.

DAdjComp1

Mix3
=

[j,> → R
β•, j, r | l,m | false],

[h,Mγ → υ•, l,m | p′, q′ | adj]

[[Mγ → υ•, j, r | p′, q′ | true]]
β ∈ A

′ ∧ β ∈ adj(Mγ)

DAdjComp2

Mix3
=

[h,Mγ → •υ, i, j | −,− | adj],
[[Mγ → υ•, j, r | p′, q′ | true]],
[h,Mγ → υ•, l,m | p′, q′ | adj]

[h,Mγ → υ•, i, r | p′, q′ | true]
β ∈ A

′ ∧ β ∈ adj(Mγ)
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Simultaneous adjunctions of several auxiliary trees in β ∈ A
′ is achieved by using

the consequent item generated by a deduction step in DFootPred
Mix3

as antecedent of a

deduction step in DAdjPred
Mix3

to start the adjunction of an auxiliary tree β ′ ∈ A
′. When

the traversal of β′ has finished, a step in DFootComp
Mix2

re-takes the traversal of β at the
foot node. The process is repeated for each auxiliary tree which is to be simultaneously
adjoined.

A major difference of this parsing system with respect to
�

Mix2
is that Comb steps

are not needed, due to the strong prediction performed by steps in DPred1

Mix3
guarantees

that simultaneous adjunctions are applied from left to right with respect to the input
string.

The input string belongs to the language defined by the grammar if a final item
in the set F =

{

[−,> → R
α•, 0, n | −,− | false] | α ∈ I ∧ S = label(Rα)

}

is
generated.

5. Complexity

The worst-case space complexity of the algorithms described by
�

Mix1
and

�
Mix2

is in O(n4), as at most four input positions are stored into items corresponding to
auxiliary trees belonging to A

′. For
�

Mix3
, the worst-case space complexity is in

O(n5). In all cases, initial trees and strongly left and right auxiliary trees contribute
O(n2) to the final result.

With respect to the worst-case time complexity:

– TIG adjunction, the adjunction of a strongly left or right auxiliary tree on a node
of a tree belonging to I ∪ ASL ∪ ASR, is managed in O(n3) by LAdjComp and
RAdjComp steps in all algorithms.

– In
�

Mix1
and

�
Mix2

, full TAG adjunction is managed in O(n6) by AdjComp
deduction steps, which are in charge of dealing with auxiliary trees belonging to A

′.
In fact, O(n6) is only attained when a wrapping auxiliary tree is adjoined on a spine
node of a wrapping auxiliary tree. The adjunction of a wrapping auxiliary tree on a
right node of a wrapping auxiliary tree is managed in O(n5) due to Comp deduction
steps.

– In
�

Mix3
, full TAG adjunction is managed in O(n6) by AdjComp1 steps and

in O(n5) by AdjComp2 steps when a wrapping auxiliary tree is adjoined on a spine
node of a wrapping auxiliary tree, thus given an overall complexity of O(n6). The
adjunction of a wrapping auxiliary tree on a right node of a wrapping auxiliary tree
is managed in O(n4) by AdjComp1 steps and in O(n3) by AdjComp2 steps, but in
O(n5) by Comp deduction steps.

– The adjunction of a strongly right auxiliary tree on a spine or right node of a
wrapping auxiliary tree is managed in O(n5) time due to RAdjComp deduction steps.
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– Other cases of adjunction, e.g., the adjunction of a strongly left or right auxiliary
tree on a spine node of a tree belonging to (AL −ASL)∪ (AR −ASR), are managed
in O(n4).

Transitive and Ditransitive
(1) Srini bought a book
(2) Srini bought Beth a book
Arguments and Adjuncts
(3) Srini bought a book at the bookstore
(4) he put the book on the table
(5) *he put the book
Ergative and Intransitive
(6) the sun melted the ice
(7) the ice melted
(8) Elmo borrowed a book
(9) *a book borrowed
Sentential Complements
(10) he hopes Muriel wins
(11) he hopes that Muriel wins
Relative Clauses
(12) the man who Muriel likes bought a book
(13) the man that Muriel likes bought a book
Auxiliary Verbs
(14) the music should have been being played for the president
Extraction
(15) Clove caught a frisbee
(16) who caught a frisbee
(17) what did Clove catch
Unbounded Dependencies
(18) the aardvark smells terrible
(19) the emu thinks that the aardvark smells terrible
(20) who does the emu think smells terrible
(21) who did the elephant think the panda heard the emu said smells terrible
Adjectives
(22) Herbert is angry
(23) Herbert is angry and furious
(24) Herbert is more livid than angry
(25) Herbert is more livid and furious than angry

Table 1. Sentences used in the XTAG experiment
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6. Experimental results

We have incorporated the parsing algorithms described in this article into a naive
implementation in Prolog of the deductive parsing machine presented in [SHI 95]. As
a first experiment, we have compared the performance of the Earley-like parsing algo-
rithms for TIG [SCH 95] and TAG [ALO 99] with respect to TIGs. For this purpose,
we have made the experiments on two simple TIGs GL = {α, βL} and GR = {α, βR}
(see Figure 3). For a TIG, the time complexity of the adjunction completion step of
a TAG parser is O(n4), in contrast with the O(n3) complexity of left and right ad-
junction completion for a TIG parser. Therefore, we expected the TIG parser to be
considerably faster than the TAG parser. In effect, for GL we have observed that the
TIG parser is up to 18 times faster than the TAG parser, but in the case of GR the
difference becomes irrelevant.

These results have been corroborated by a second experiment performed on artifi-
cial TAGs with the mixed (

�
Mix) and the TAG parser: the performance of the mixed

parser improves when strongly left auxiliary trees are involved in the analysis of the
input string.

In a third experiment, we have taken a subset of the XTAG grammar [DOR 94],
consisting of 27 elementary trees that cover a variety of English constructions: rel-
ative clauses, auxiliary verbs, unbounded dependencies, extraction, etc. In order to
eliminate the time spent by unification, we have not considered the feature structures
of elementary trees. Instead, we have simulated the features using local constraints.
The set of sentences used in the experiment is shown in table 1. Every sentence has
been parsed without previous filtering of elementary trees.

First of all, we have implemented a combined parser
�

Mix1
where simultaneous

adjunctions are forbidden and we have corroborated the results included in [ALO 02]:
the application of the parser

�
Mix1

results in a reduction in time, with respect to
classical Earley-like parsers for TAG, that varies in percentage from 31% to 0%, de-
pending on the kind of trees involved in the analysis of each sentence. Then, we have
compared the parsers

�
Mix1

,
�

Mix2
and

�
Mix3

to test the benefits of simultaneous
adjunctions and preserving the correct prefix property. Table 2 shows the results of
this experiment:

– The first column is the number of the corresponding sentence in table 1.

– The second and third column show the time, in seconds, spent by parsers
�

Mix1

and
�

Mix2
in the analysis of each sentence, respectively.

– The fourth column, labeled ∆12, shows the difference, in percentage, of the time
spent by

�
Mix2

with respect to
�

Mix1
. Negative values indicate real improvements.

As we can observe,
�

Mix2
obtains a reduction in time that varies in percentage from

46% to 12%, depending on the kind of trees involved in the analysis of each sentence.
We would like to address the results obtained by our approach in sentences 12, 13 and
14 where simultaneous adjunctions of left and right auxiliary trees must be applied.
In these cases, the parser

�
Mix1

needs to apply a classical wrapping adjunction.
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– The fifth column shows the time, in seconds, spent by the parser
�

Mix3
for each

sentence.

– The sixth column, labeled ∆23, shows the difference, in percentage, of the time
spent by

�
Mix3

with respect to
�

Mix2
. It is interesting to remark that preserving the

correct prefix property increases the computational cost of the parsing process from
11% to 50%. These results suggest that, although the time complexity is in O(n6) for
both parsers, some constants involved in the expression of complexity for

�
Mix3

must
be greater than the corresponding ones for

�
Mix2

. A detailed examination of the trace
of both executions shows that:

1) In the traversal of initial and strongly left and right auxiliary trees, the num-
ber of deduction steps applied by both parsers is the same, i.e., all the gain in perfor-
mance due to considering a part of the grammar as a TIG is attained by

�
Mix2

.

2) In the traversal of wrapping auxiliary trees, the number of deduction steps
applied by

�
Mix3

is slightly lower than
�

Mix2
.

3) Independently of the kind of trees involved in the analysis of a sentence, the
number of inferences (i.e., the number of CALL and REDO performed by the Prolog
interpreter) is higher in

�
Mix3

than in
�

Mix2
, due to the complex checkings performed

by Pred1 steps.

– Finally, the seventh column, labeled ∆13, shows the difference, in percentage,
of the time spent by

�
Mix3

with respect to
�

Mix1
. We can observe that

�
Mix3

obtain
better results for 76% of the sentences.

7. Conclusion

We have defined several parsing algorithms which reduce the practical complex-
ity of TAG parsing by taking into account that a large part of actual TAG grammars
can be managed as a TIG. Several approaches has been tried: the first parser forbid
simultaneous adjunctions, the second one extends the classical adjunction operation
in TAG by considering the possibility of simultaneous adjunctions at a given node,
and the third one allows simultaneous adjunctions at the time it preserves the correct
prefix property.

Practical experiments performed on a subset of the XTAG grammars show that
considering simultaneous adjunctions improves highly the parsing efficiency due to a
larger number of adjunctions can be managed as TIG adjunctions. In contrast, pre-
serving the correct prefix property in mixed parsers have shown to be of little interest
due to the high cost involved by the stronger predictions that must be performed to
satisfy such property.

The performance of the algorithms could be improved by means of the application
of practical optimizations, such as the replacement of the components p and q of items
[Nγ → δ • ν, i, j | p, q] ∈ I

(a)
Mix by the list of all adjunctions that are still under com-
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Time Time Time
Sentence

�
Mix1

�
Mix2

∆12
�

Mix3
∆23 ∆13

(1) 0.13 0.08 -38.46% 0.12 +50.00% +7.69%
(2) 0.17 0.11 -35.29% 0.15 +35.36% -11.76%
(3) 0.21 0.15 -28.57% 0.20 +33.33% -4.76%
(4) 0.18 0.13 -27.78% 0.18 +38.46% -0.00%
(5) 0.10 0.07 -30.00% 0.10 +42.85% -0.00%
(6) 0.17 0.11 -35.29% 0.16 +45.45% -5.88%
(7) 0.10 0.07 -30.00% 0.09 +28.57% -10.00%
(8) 0.13 0.08 -38.46% 0.11 +37.05% -15.38%
(9) 0.08 0.06 -25.00% 0.08 +33.33% -0.00%

(10) 0.21 0.14 -33.33% 0.19 +35.71% -9.52%
(11) 0,27 0.20 -25.93% 0.27 +35.00% -0.00%
(12) 0,32 0,24 -25.00% 0.36 +50.00% +12.50%
(13) 0.28 0.21 -25.00% 0.30 +42.85% +7.14%
(14) 0.33 0.29 -12.12% 0.41 +37.93% +24.24%
(15) 0.12 0.09 -25.00% 0.11 +22.22% -8.33%
(16) 0.12 0.09 -25.00% 0.11 +22.22% -8.33%
(17) 0.13 0.07 -46.15% 0.10 +42.85% -23.08%
(18) 0.10 0.07 -30.00% 0.09 +28.57% -10.00%
(19) 0.32 0.27 -15.63% 0.38 +40.74% +18.75%
(20) 0.21 0.12 -42.86% 0.19 +58.33% -9.52%
(21) 0.58 0.39 -32.76% 0.59 +51.28% +1.72%
(22) 0.09 0.07 -22.22% 0.08 +14.28% -11.11%
(23) 0.14 0.09 -35.71% 0.10 +11.11% -28.57%
(24) 0.12 0.08 -33.33% 0.11 +25.00% -8.33%
(25) 0.13 0.10 -23.08% 0.12 +20.00% -7.69%

Table 2. XTAG results, in seconds, for
�

Mix1
and

�
Mix2

and
�

Mix3
parsers

pletion on Nγ [CLE 01], albeit this modification increase the worst-case complexity
of the algorithm.
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