
Tabulation of Automata for Tree Adjoining Languages

Miguel A. Alonso Pardo
David Cabrero Souto

Departamento de Computación
Universidad de La Coruña

Campus de Elviña s/n
15071 La Coruña, Spain

{alonso,cabrero}@dc.fi.udc.es

Eric de la Clergerie

INRIA
Domaine de Voluceau
Rocquecourt, B.P. 105

78153 Le Chesnay Cedex, France
Eric.De La Clergerie@inria.fr

Abstract

We try to provide a common framework to clar-
ify the relationships between different automata
and their associated tabulation techniques for
Tree Adjoning Languages, a subclass of Mildly
Context-Sensitive Languages. We have chosen
Logic Push-down Automata working with Lin-
ear Indexed Grammars as a starting point. Sev-
eral tabulation techniques for different parsing
strategies are proposed and compared with pre-
vious approaches.

1 Introduction

The class of Mildly Context-Sensitive Lan-
guages (MCSL) is placed between context-free
languages and context-sensitive languages. An
important subclass in MCSL is that of Tree Ad-
joining Languages, which can be described by
several grammar formalisms which have been
shown to be equivalent with respect to their
weak generative capacity (Vijay-Shanker and
Weir, 1994): Tree Adjoining Grammars (Joshi
and Schabes, 1997), Linear Indexed Gram-
mars (Gazdar, 1987), Head Grammars (Pol-
lard, 1984) and Combinatory Categorial Gram-
mars (Steedman, 1986). Several parsing algo-
rithms have been proposed for all of them, but
the design of correct and efficient parsing algo-
rithms is a difficult task that could be simplified
by providing a separation between the descrip-
tion of the parsing strategy and the execution of
the parser. A way to do that is to define a class
of automata to describe the parsing strategy,
which could be executed using some tabulation
technique.

Several classes of automata have been pro-
posed for tree adjoining languages: Em-
bedded Push-down Automata (Vijay-Shanker,
1988), Bottom-up Embedded Push-down Au-
tomata (Schabes and Vijay-Shanker, 1990),

2-Stack Automata (Becker, 1994), Strongly-
driven 2–Stack Automata (de la Clergerie and
Alonso Pardo, 1998), Bottom-up 2–Stack Au-
tomata (de la Clergerie et al., 1998) and Linear
Indexed Automata (Nederhof, 1998b), but tab-
ulation techniques have only been designed for
the latter three classes. Moreover, the parsing
strategies that can be described using each of
them are different as are the tabulation tech-
niques. In contrast, in the realm of context-free
parsing and logic programming there exist stan-
dard operational devices with also standard tab-
ulation techniques: push-down automata and
Logic Push-down Automata (Lang, 1988; de la
Clergerie and Lang, 1994).

In this paper we try to clarify the relation-
ships between the different classes of automata.
Following Nederhof (1998b), we have chosen to
take Logic Push-Down Automata (LPDA) as a
starting point due to the relationships between
Linear Indexed Grammars (LIG) and Definite
Clause Grammars (DCG) (Pereira and Warren,
1980).

2 Linear Indexed Grammars and
Logic Push-Down Automata

Indexed Grammars (Aho, 1968) are an exten-
sion of Context-free Grammars with a stack
of indices associated with each non-terminal
symbol. Linear Indexed Grammars (Gazdar,
1987) are a restricted form of Indexed Gram-
mars in which the index stack of the head non-
terminal of each production can be inherited
by at most one body non-terminal (the depen-
dent child) while the other stacks must have a
bounded stack size. Formally, a LIG is a tu-
ple (VT , VN , VI , P, S), where VT is a finite set
of terminals, VN a finite set of non-terminals,
VI is a finite set of indices, S ∈ VN is the start
symbol and P is a finite set of productions. Fol-

lowing Gazdar (1987) we consider productions
in which at most one element can be pushed on
or popped from a stack of indices:

Ar,0[◦◦γ] → Ar,1[] . . . Ar,i−1[]
Ar,i[◦◦γ

′]
Ar,i+1[] . . . Ar,nr

[]

Ar,0[] → a

where Aj ∈ VN , a ∈ V ∗

T and γ, γ′ ∈ VI ∪{ǫ} and
for each production, either γ or γ′ or both must
be ǫ. In any derivation the stack associated to
the start symbol must be empty: S[].

LIG can be considered as a special case of
DCG. For example, a LIG production

A[◦◦γ]→ B[] C[◦◦] D[]

can be written as a DCG production

big_a([gamma|X]) --> big_b([]),
big_c(X),
big_d([]).

and a LIG production

A[]→ a

can be written as

big_a([]) --> "a".

Given a parse forest for LIG as defined
by Boullier (1995), a path starting from a non-
dependent child of a production and following
the dependent children is called a spine. The
index stacks involved along a spine refers to the
same index stack, not to copies.

Logic Push-Down Automata, which can be
used as an operational device for DCGs parsing,
follow the structure of classical push-down au-
tomata but stack symbols are replaced by logic
atoms on some sets P of predicates, F of func-
tions and X of variable symbols. Transitions
are applied to stacks modulo a unification pro-
cess with some of the topmost elements, with
the resulting substitution applied to the whole
stack. Formally, a LPDA is defined by a tuple
(P, F, X, $0, $f , Θ), where $0 is the initial stack
element, $f is the final stack element and Θ is
a finite set of transitions of the form

SWAP (B
a
7→ C)(ξA) = (ξC)σ where σ =

mgu(A, B).

PUSH (B
a
7→ BC)(ξA) = (ξAC)σ where σ =

mgu(A, B).

POP (DB
a
7→ C)(ξEA) = (ξC)σ where σ =

mgu(〈E, A〉, 〈D, B〉).

where a is in VT ∪ {ǫ}, A, B, C, D, and E are
stacks elements, and ξ is a stack (growing right-
ward), and mgu(x, y) is the most general unifier
between x and y. A configuration for a LPDA
is a pair (ξ, w), where ξ denotes the content of
the stack and w the input string to be read.
The derivation relation between configurations
is denoted by ⊢ and its transitive and reflexive

closure is denoted by
∗

⊢.
Given a DCG and a parsing strategy, a LPDA

can be defined by means of a set of transitions
describing the computations that could be ap-
plied to the grammar using the parsing strat-
egy. If we restrict the input grammars to those
with the form of LIG, we obtain a subclass of
LPDA that we call Restricted LPDA and that
may serve as operational devices for LIG.

Table 1 shows a generic compilation schema
transforming a LIG into a set of transitions of a
Restricted LPDA having $0[] as initial element

and
←−
S [] as final element, where −→x (resp. ←−x)

denotes the information predicted (resp. prop-
agated) with respect to x, which can be a non-
terminal, a index or an index stack.

We have used the notation of linear indexed
grammars as a shorthand of Prolog notation.
So, the index stack associated to each non-
terminal represents its only argument, where []
stands for the empty list and [◦◦γ] for the list
[γ|X] where ◦◦ plays the role of a variable X.
With respect to the compilation rules, [INIT]
transitions are used to start the computations,
[CALL] transitions to call a grammar element
which is not a dependent child, [SCALL] (spine
call) to call a dependent child, [SEL] to select
a production, [PUB] to finish the parsing of
a production, [RET] to continue the parsing
process after a non-dependent child has been
recognized, [SRET] (spine ret) to continue the
parsing process after a dependent child has been
recognized and [SCAN] to recognize the termi-
nals in the input string.

Table 2 shows the parsing strategies obtained

[INIT] $0[◦◦] 7→ $0[◦◦] ∇0,0[]

[CALL] ∇r,s[◦◦] 7→ ∇r,s[◦◦]
−−−−→
Ar,s+1[] Ar,0[◦◦γ]→ Υ1Ar,s+1[]Υ2

[SCALL] ∇r,s[
−→◦◦−→γ] 7→ ∇r,s[

−→◦◦−→γ]
−−−−→
Ar,s+1[

−→◦◦
−→
γ′] Ar,0[◦◦γ]→ Υ1Ar,s+1[◦◦γ

′]Υ2

[SEL]
−−→
Ar,0[◦◦] 7→ ∇r,0[◦◦] r 6= 0

[PUB] ∇r,nr
[◦◦] 7→

←−−
Ar,0[◦◦]

[RET] ∇r,s[◦◦]
←−−−−
Ar,s+1[] 7→ ∇r,s+1[◦◦] Ar,0[◦◦γ]→ Υ1Ar,s+1[]Υ2

[SRET] ∇r,s[
−→◦◦−→γ]

←−−−−
Ar,s+1[

←−◦◦
←−
γ′] 7→ ∇r,s+1[

←−◦◦←−γ] Ar,0[◦◦γ]→ Υ1Ar,s+1[◦◦γ
′]Υ2

[SCAN]
−−→
Ar,0[]

a
7→
←−−
Ar,0[] Ar,0[]→ a

Table 1: Generic compilation schema

CF-strategy indices-strategy
−−−−→
Ar,s+1

−→γ −→◦◦
←−−−−
Ar,s+1

←−γ ←−◦◦

BU ⊥ ǫ ǫ Ar,s+1 γ ◦◦

Earley BU Ar,s+1 ǫ ǫ Ar,s+1 γ ◦◦

TD Ar,s+1 ǫ ǫ ⊥ γ ◦◦

BU ⊥ γ ◦◦ Ar,s+1 γ ◦◦

Earley Earley Ar,s+1 γ ◦◦ Ar,s+1 γ ◦◦

TD Ar,s+1 γ ◦◦ ⊥ γ ◦◦

BU ⊥ γ ◦◦ Ar,s+1 ǫ ǫ

Earley TD Ar,s+1 γ ◦◦ Ar,s+1 ǫ ǫ

TD Ar,s+1 γ ◦◦ ⊥ ǫ ǫ

Table 2: Parsing strategies obtained by different instantiations of −→x and ←−x

by different instantiations of −→x and ←−x in the
previous compilation schema. Parsing strate-
gies are specified using a pair of strategies con-
trolling the flow of information, the first one
(CF-strategy) dealing with non-terminals while
the other (indices-strategy) deals with the in-
dices. In both cases, BU stands for bottom-up,
TD for top-down and Earley for mixed strate-
gies. As is usual in LPDA, when a non-terminal
A is predicted and propagated we differenti-
ate the two cases using A to indicate the pre-

diction and A to indicate the propagation, al-

though the information transmitted is the same
in both cases. It is interesting to remark that
strategies in which −→◦◦ and ←−◦◦ are both differ-
ent from ǫ must include an additional restric-
tion to [SRET] transitions indicating that −→◦◦
and ←−◦◦ must unify, i.e. the contents of both
stacks must be the same although the stacks
themselves are different, as one has been con-
structed from the empty stack by [SCALL]
transitions throughout the spine (the call phase
or descendent phase of the computation of a
spine) while the other was constructed from the

empty stack by [SRET] transitions throughout
the spine (the return phase or ascendent phase
of the computation of a spine).

Standard tabulation techniques for LPDA
can be applied to Restricted LPDA, but LIGs
usually do not have the properties guaranteeing
termination in DCG, such as off-line parsabil-
ity (Pereira and Warren, 1983) or depth-
boundness (Haas, 1989). However, it is pos-
sible to design specific tabulation techniques
with polynomial complexity with respect to the
length of the input string for Restricted LPDA
based on the property defined by Vijay-Shanker
and Weir (1993), that we call context-freeness
property of LIG, establishing that if

A[γ]
∗

⇒ uB[]w

where u, w ∈ V ∗

T , A, B ∈ VN , γ ∈ VI ∪ {ǫ} and
B[] is the dependent descendant of A[γ], then
for each Υ1, Υ2 ∈ (VN [V ∗

I]∪VT)∗and β ∈ V ∗

I we
have

Υ1A[βγ]Υ2
∗

⇒ Υ1uB[β]wΥ2

In addition, if B[β]
∗

⇒ v, where v ∈ V ∗

T , then

Υ1A[βγ]Υ2
∗

⇒ Υ1uB[β]wΥ2
∗

⇒ Υ1uvwΥ2.

3 Tabulation for ∗-BU strategies

By ∗-BU we denote those strategies which do
not predict information with respect to the in-
dices, regardless of the CF-strategy. As an ex-
ample, table 3 shows the compilation schema
corresponding to the BU-BU strategy which
generates a Restricted LPDA having $0[] as
initial element and S[] as final element. The
[SCALL] and [SCAN] transitions are slightly
different from those defined for the generic
strategies. This is only for convenience, as the
strategy forces the stacks involved in the former
kind of transitions to be empty. The correspon-
dence between kinds of transition and compila-
tion rules is shown in table 4.

The key step needed to design a tabulation
technique is to determine the information we
need to trace with respect to a given deriva-
tion. That information is stored into items.
For Restricted LPDA we consider items hav-
ing the form [head | tail] storing a set of non-
terminals with the positions of the input string
corresponding to the moment when they were
pushed, and in some cases the index in the top

of the index stack associated to some of the non-
terminals. The head is used to store the infor-
mation needed to determine if a transition could
be applied and the tail is used to store the infor-
mation needed to guarantee the consistency of
the index stacks when transitions are applied.

In the case of ∗-BU strategies, we consider
two different types of derivations that can yield
a configuration (ξ B[α] C[βγ], aj+1 . . . an):

Call derivations. Correspond to configura-
tions with βγ = ǫ:

(ξ B[α], ai+1 . . . an)
∗

⊢ (ξ B[α] C[], aj+1 . . . an)

This kind of derivations can be tabulated
using call items of the form

[B, i, C, j,− | −,−,−,−]

Due to context-freeness property of LIG,
derivations are independent of the values
taken by ξ and α and so it is not necessary
to store information about these elements.

Return derivations. Correspond to configu-
rations with β ∈ V ∗

I and γ ∈ VI :

(ξ B[], ai+1 . . . an)
∗

⊢d1
(ξ B[] ξ1 D[], ap+1 . . . an)

∗

⊢d2
(ξ B[] ξ1 D[] E[β], aq+1 . . . an)

∗

⊢d3
(ξ B[] C[βγ], aj+1 . . . an)

where γ ∈ VI , β ∈ V ∗

I . The two occur-
rences of β denote the same list in the sense
that it is passed on unaffected through d3.
This kind of configuration can be tabulated
using return items of the form

[B, i, C, j, γ | D, p, E, q]

To combine items, we use inference rules simi-
lar to those used by grammatical deduction sys-
tems described by Shieber et al. (1995). Each
rule ants

consq
trans consists of a list ants of antecedent

items and a consequent item consq, meaning
that if all antecedents ηi are present and there
exists a transition trans then the consequent
item should be generated. The rules for ∗-BU
strategies are shown in table 5, where k = j
if a = ǫ and k = j + 1 if a = aj+1. These

[INIT] $0[◦◦] 7→ $0[◦◦] ∇0,0[]

[CALL] ∇r,s[◦◦] 7→ ∇r,s[◦◦] ⊥ []

[SCALL] ∇r,s[◦◦] 7→ ∇r,s[◦◦] ⊥ []

[SEL] ⊥ [◦◦] 7→ ∇r,0[◦◦] r 6= 0

[PUB] ∇r,nr
[◦◦] 7→ Ar,0[◦◦]

[RET] ∇r,s[◦◦] Ar,s+1[] 7→ ∇r,s+1[◦◦] Ar,0[◦◦γ]→ Υ1Ar,s+1[]Υ2

[SRET] ∇r,s[] Ar,s+1[◦◦γ
′] 7→ ∇r,s+1[◦◦γ] Ar,0[◦◦γ]→ Υ1Ar,s+1[◦◦γ

′]Υ2

[SCAN] ⊥ [◦◦]
a
7→ Ar,0[◦◦] Ar,0[]→ a

Table 3: Compilation schema corresponding to the BU-BU strategy

Transition Compilation rule

C[◦◦]
a
7→ C[◦◦] F [] [INIT] [CALL] [SCALL]

C[◦◦]
a
7→ F [◦◦] [SEL] [PUB] [SCAN]

B[◦◦] C[]
a
7→ F [◦◦] [RET]

B[] C[◦◦γ]
a
7→ F [◦◦γ′] [SRET]

Table 4: Correspondence between types of transition and compilation rules for ∗-BU strategies

rules, which are very similar to those proposed
by Nederhof (1998b), give a time complexity
O(n6), using partial application to decrease the
complexity of the last rule from O(n7) to O(n6),
and a space complexity O(n4) with respect to
the length n of the input string.

4 Tabulation for ∗-Earley strategies

By ∗-Earley we denote those strategies which
predict and propagate information with respect
to the indices, regardless of the CF-strategy.
As an example, the compilation schema corre-
sponding to the Earley-Earley strategy is shown
in table 6. The Restricted LPDA generated has

$0[] as initial element and S[] as final element.
The types of transition corresponding to each
compilation rule are shown in table 7.

To design a tabulation technique for this kind
of strategies, we need to consider three different
types of derivations:

Call derivations. Correspond to the trans-
mission of the index stack during the call
phase:

(ξ A[δ], ah+1 . . . an)
∗

⊢d1
(ξ A[δ] ξ1 B[δα], ai+1 . . . an)

∗

⊢d2
(ξ A[δ] ξ1 B[δα] C[δγ], aj+1 . . . an)

where γ ∈ VI , δ, α ∈ V ∗

I , 0 ≤ |α| ≤ 2
and the index stack δ is passed unaffected
through derivations. If δα=δ, then d1 is a
empty derivation and A = B. This kind
of derivation is tabulated by means of call
items of the form

[A, h | B, i, C, j, γ | −,−,−,−]

Return derivations. Correspond to the
transmission of the index stack during the

[B, i, C, j, γ | D, p, E, q]

[C, j, F, k,− | −,−,−,−]
C[◦◦]

a
7→ C[◦◦] F []

[B, i, C, j, γ | D, p, E, q]

[B, i, F, k, γ | D, p, E, q]
C[◦◦]

a
7→ F [◦◦]

[B, i, C, j,− | −,−,−,−]
[M, m, B, i, γ | D, p, E, q]

[M, m, F, k, γ | D, p, E, q]
B[◦◦] C[]

a
7→ F [◦◦]

[B, i, C, j, γ | D, p, E, q]
[M, m, B, i,− | −,−,−,−]

[M, m, F, k, γ | D, p, E, q]
B[] C[◦◦]

a
7→ F [◦◦]

[B, i, C, j, γ | D, p, E, q]
[M, m, B, i,− | −,−,−,−]

[M, m, F, k, γ′ | B, i, C, j]
B[] C[◦◦]

a
7→ F [◦◦γ′]

[B, i, C, j, γ | D, p, E, q]
[M, m, B, i,− | −,−,−,−]
[D, p, E, q, γ′ | O, u, P, v]

[M, m, F, k, γ′ | O, u, P, v]
B[] C[◦◦γ]

a
7→ F [◦◦]

Table 5: Combination rules for ∗-BU strategies

[INIT] $0[◦◦] 7→ $0[◦◦] ∇0,0[]

[CALL] ∇r,s[◦◦] 7→ ∇r,s[◦◦] Ar,s+1[] Ar,0[◦◦γ]→ Υ1Ar,s+1[]Υ2

[SCALL] ∇r,s[◦◦γ] 7→ ∇r,s[◦◦γ] Ar,s+1[◦◦γ
′] Ar,0[◦◦γ]→ Υ1Ar,s+1[◦◦γ

′]Υ2

[SEL] Ar,s+1[◦◦] 7→ ∇r,0[◦◦] r 6= 0

[PUB] ∇r,nr
[◦◦] 7→ Ar,0[◦◦]

[RET] ∇r,s[◦◦] Ar,s+1[] 7→ ∇r,s+1[◦◦] Ar,0[◦◦γ]→ Υ1Ar,s+1[]Υ2

[SRET] ∇r,s[◦◦γ] Ar,s+1[◦◦γ
′] 7→ ∇r,s+1[◦◦γ] Ar,0[◦◦γ]→ Υ1Ar,s+1[◦◦γ

′]Υ2

[SCAN] Ar,0[]
a
7→ Ar,0[] Ar,0[]→ a

Table 6: Compilation schema corresponding to the Earley-Earley strategy

Transition Compilation rule

C[◦◦]
a
7→ C[◦◦] F [] [INIT] [CALL]

C[◦◦γ]
a
7→ C[◦◦γ] F [◦◦γ′] [SCALL]

C[◦◦]
a
7→ F [◦◦] [SEL] [PUB]

B[◦◦] C[]
a
7→ F [◦◦] [RET]

B[◦◦1γ] C[◦◦2γ
′]

a
7→ F [◦◦2γ] [SRET]

C[]
a
7→ F [] [SCAN]

Table 7: Correspondence between types of transition and compilation rules for ∗-Earley strategies

return phase:

(ξ A[δ], ah+1 . . . an)
∗

⊢d1
(ξ A[δ] ξ1 B[δα], ai+1 . . . an)

∗

⊢d2
(ξ A[δ] ξ1 B[δα] ξ2 D[δγ], ap+1 . . . an)

∗

⊢d3
(ξ A[δ] ξ1 B[δα] ξ2 D[δγ] E[β], aq+1 . . . an)

∗

⊢d4
(ξ A[δ] ξ1 B[δα] C[βγ], aj+1 . . . an)

where γ ∈ VI , α, β, δ ∈ V ∗

I , |δ| = |β|,
0 ≤ |α| ≤ 2. We have that δ = δ1 . . . δz and
β = β1 . . . βz where δi, βi ∈ VI . It is manda-
tory that ∀i, δi = βi, i.e. the contents of
both stacks are the same but the stacks are
different: one has been constructed during
the call phase, the other during the return
phase. The return items that represent this
kind of derivations are:

[A, h | B, i, C, j, γ | D, p, E, q]

Special point derivations. Correspond to
the creation or termination of a spine:

(ξ2 B[δ], ai+1 . . . an)
∗

⊢d (ξ2 B[δ] C[], aj+1 . . . an)

and are represented in the tabular frame-
work by special point items of the form

[−,− | B, i, C, j,− | −,−,−,−]

These derivations are similar to context-
free derivations, as actually each spine is
independent of the other ones. This kind
of derivation was not distinguishable from

call derivations in the case of ∗-BU strate-
gies.

The two leading elements A and h of items
should in theory be placed in the tail of the
items, as they are used to check the consistency
of the index stacks when a transition is applied.
Instead, they are placed in front of the head to
emphasize that A was pushed onto the stack
before the other elements in the item. It is
also interesting to remark that these items are
similar to those proposed by Nederhof (1997)
for the Earley-like parsing algorithm for TAG
preserving the valid prefix property, which also
store information about five points in a deriva-
tion. The rules combining items are shown in
table 8, where k = j if a = ǫ and k = j + 1
if a = aj+1. These rules give a time com-
plexity O(n7) but applying the technique de-
scribed in (de la Clergerie and Alonso Pardo,
1998; Nederhof, 1997) the rule corresponding

to the transitions B[◦◦1] C[◦◦2γ
′]

a
7→ F [◦◦2] can

be decomposed into the following two rules

[B, i | B, i, C, j, γ′ | D, p, E, q]
[M, m | D, p, E, q, γ | O, u, P, v]

[[B, i, C, j, γ′ | O, u, P, v]]

[[B, i, C, j, γ′ | O, u, P, v]]
[M, m |, N, t, B, i, γ | −,−,−,−]
[M, m | D, p, E, q, γ | O, u, P, v]

[M, m | N, t, F, k, γ | O, u, P, v]

where [[B, i, C, j, γ′ | O, u, P, v]] is an interme-
diate pseudo-item, obtaining a final time com-
plexity O(n6). The space complexity is O(n5).

[A, h | B, i, C, j, γ | D, p, E, q]

[−,− | C, j, F, k,− | −,−,−,−]
C[◦◦]

a
7→ C[◦◦] F []

[A, h | B, i, C, j, γ | −,−,−,−]

[A, h | C, j, F, k, γ | −,−,−,−]
C[◦◦]

a
7→ C[◦◦] F [◦◦]

[A, h | B, i, C, j, γ | −,−,−,−]

[C, j | C, j, F, k, γ′ | −,−,−,−]
C[◦◦]

a
7→ C[◦◦] F [◦◦γ′]

[A, h | B, i, C, j, γ | −,−,−,−]
[M, m | N, t, A, h, γ′ | −,−,−,−]

[M, m | C, j, F, k, γ′ | −,−,−,−]
C[◦◦γ]

a
7→ C[◦◦γ] F [◦◦]

[A, h | B, i, C, j, γ | D, p, E, q]

[A, h | B, i, F, k, γ | D, p, E, q]
C[◦◦]

a
7→ F [◦◦]

[−,− | B, i, C, j,− | −,−,−,−]
[M, m | N, t, B, i, γ | D, p, E, q]

[M, m | N, t, F, k, γ | D, p, E, q]
B[◦◦] C[]

a
7→ F [◦◦]

[A, h | B, i, C, j, γ | D, p, E, q]
[A, h |M, m, B, i, γ | −,−,−]

[A, h |M, m, F, k, γ | D, p, E, q]
B[◦◦1] C[◦◦2]

a
7→ F [◦◦2]

[A, h | B, i, C, j, γ′ | D, p, E, q]
[A, h | N, t, M, m, γ′ | −,−,−,−]
[M, m | O, u, B, i, γ | −,−,−,−]

[M, m | O, u, F, k, γ | B, i, C, j]
B[◦◦1γ] C[◦◦2]

a
7→ F [◦◦2γ]

[B, i | B, i, C, j, γ′ | D, p, E, q]
[M, m |, N, t, B, i, γ | −,−,−]
[M, m | D, p, E, q, γ | O, u, P, v]

[M, m | N, t, F, k, γ | O, u, P, v]
B[◦◦1] C[◦◦2γ

′]
a
7→ F [◦◦2]

[−,− | B, i, C, j,− | −,−,−,−]

[−,− | C, j, F, k,− | −,−,−,−]
C[]

a
7→ F []

Table 8: Combining rules ofr ∗-Earley strategies

5 Tabulation for ∗-TD strategies

By ∗-TD we denote those strategies which pre-
dict information with respect to the indices but
do not propagate any information about them
during the return phase. As an example, table 9
shows the compilation schema corresponding to
the TD-TD strategy, where [SCAN] transi-
tions are slightly different from those defined
for the generic strategies for convenience, as
the strategy forces the stacks involved in that
kind of transitions to be empty. The result-
ing Restricted LPDA has $0[] as initial ele-
ment and ∇0,n0

[] as final element. The tran-
sition types corresponding to each compilation
rule are listed in Table 10.

The tabulation technique for these strategies
is based on three types of derivations, similar
to those described for ∗-Earley strategies, ex-
cept for the emptiness of index stacks during
return phases. To denote items, we need to in-
troduce a mark ⊗ ∈ {ր,→,ց, |=}: this mark
is used as a “guide” to indicate what kind of
checking must be performed during the return
phase of the strategy due to the lack of informa-
tion about the index stacks during the return.
More precisely, ր indicates that an index was
pushed on the stack during the call phase, ց
indicates a pop, → indicates no change and |=
indicates the creation of an empty index stack.

For this kind of strategies, we need to consider
three different types of derivations in order to
design a tabulation technique:

Call derivations. Correspond to the predic-
tion of the index stack during the call
phase:

(ξ A[δ], ah+1 . . . an)
∗

⊢d1
(ξ A[δ] ξ1 B[δα], ai+1 . . . an)

∗

⊢d2
(ξ A[δ] ξ1 B[δα] C[δγ], aj+1 . . . an)

where γ ∈ VI , δ, α ∈ V ∗

I and 0 ≤ |α| ≤ 2.
They are represented by call items of the
form

[A, h | B, i,⊗, C, j, γ | −,−,−,−,−]

where the value of ⊗ is equals to ր if and
only if α = ǫ; to→ if and only if α = γ and
it is equals to ց if and only if α = γγ′ and
γ′ ∈ VI .

Return derivations. Correspond to the
transmission of a empty index stack during
the return phase:

(ξ A[δ], ah+1 . . . an)
∗

⊢d1
(ξ A[δ] ξ1 B[δα], ai+1 . . . an)

∗

⊢d2
(ξ A[δ] ξ1 B[δα] ξ2 D[δγ], ap+1 . . . an)

∗

⊢d3
(ξ A[δ] ξ1 B[δα] ξ2 D[δγ] E[], aq+1 . . . an)

∗

⊢d4
(ξ A[δ] ξ1 B[δα] C[], aj+1 . . . an)

where γ ∈ VI , α, δ ∈ V ∗

I and 0 ≤ |α| ≤ 2.
They are represented by return items of the
form

[A, h | B, i,⊗, C, j,− | D, p, γ, E, q]

Special point derivations. Correspond to
the creation or termination of a spine:

(ξ2 B[δ], ai+1 . . . an)
∗

⊢d (ξ2 B[δ] C[], aj+1 . . . an)

and are represented by special point items
of the form

[−,− | B, i, |=, C, j,− | −,−,−,−,−]

Items are combined using the set of combin-
ing rules shown in table 11, very similar to the
rules introduced for ∗-Earley strategies, where
k = j if a = ǫ and k = j + 1 if a = aj+1.
As in the case of ∗-Earley strategies, time com-
plexity is O(n7) but can be reduced to O(n6)
decomposing the last rule into two rules. Space
complexity is O(n5).

6 Relations with tabulation
techniques for other automata

6.1 SD–2SA

Strongly-Driven 2-Stack Automata (de la Clerg-
erie and Alonso Pardo, 1998) are an extension of
push-down automata working on a pair of asym-
metric stacks, a master stack MS and an auxil-
iary stack AS. These stacks are partitioned into
sessions. Computations in each session are per-
formed in one of two modes write w and erase
e. A session starts in mode write and switches
at some point to mode erase. In mode write
(resp. erase), no element can be popped from

[INIT] $0[◦◦] 7→ $0[◦◦] ∇0,0[]

[CALL] ∇r,s[◦◦] 7→ ∇r,s[◦◦] Ar,s+1[] Ar,0[◦◦γ]→ Υ1Ar,s+1[]Υ2

[SCALL] ∇r,s[◦◦γ] 7→ ∇r,s[◦◦γ] Ar,s+1[◦◦γ
′] Ar,0[◦◦γ]→ Υ1Ar,s+1[◦◦γ

′]Υ2

[SEL] Ar,0[◦◦] 7→ ∇r,0[◦◦] r 6= 0

[PUB] ∇r,nr
[◦◦] 7→⊥ [◦◦] r 6= 0

[RET] ∇r,s[◦◦] ⊥ [] 7→ ∇r,s+1[◦◦] Ar,0[◦◦γ]→ Υ1Ar,s+1[]Υ2

[SRET] ∇r,s[◦◦] ⊥ [] 7→ ∇r,s+1[] Ar,0[◦◦γ]→ Υ1Ar,s+1[◦◦γ
′]Υ2

[SCAN] Ar,0[◦◦]
a
7→ ⊥ [◦◦] Ar,0[]→ a

Table 9: Compilation schema corresponding to the TD-TD strategy

Transition Compilation rule

C[◦◦]
a
7→ C[◦◦] F [] [INIT] [CALL]

C[◦◦γ]
a
7→ C[◦◦γ] F [◦◦γ′] [SCALL]

C[◦◦]
a
7→ F [◦◦] [SEL] [PUB] [SCAN]

B[◦◦] C[]
a
7→ F [◦◦] [RET]

B[◦◦] C[]
a
7→ F [] [SRET]

Table 10: Correspondence between types of transition and compilation rules for ∗-TD strategies

(resp. pushed to) the master stack. Switching
back from e to w is not allowed. This require-
ment means that a same session stack is never
used twice by “descendants” of an element in
MS. Exiting a session is only possible when
reaching back, with an empty session stack and
in mode erase, the MS element that initiated
the session. Each pushing on MS done in write
mode leaves a mark in MS about the action
that took place on AS: ր for a push, ց for a
pop and→ if any action has taken place. When
a new session is created, the mark |= is used.
The popping of the marks in erase mode will
guide which action should take place on AS,
the erasing actions faithfully retracing the writ-
ing actions.

To design the tabulation technique for SD–
2SA, two kinds of derivations were considered.
Context-free derivations include call derivations

and special points derivations and are repre-
sented by context-free items

〈A, h〉〈B, i〉 ⊗ 〈C, j, γ〉m

with ⊗ ∈ {ր,ց,→, |=}, m ∈ {w, e}. Es-
caped context-free derivations correspond to re-
turn derivations and are represented by escaped
context-free items of the form

〈A, h〉〈B, i〉 ⊗ [〈D, p, η〉〈E, q〉]〈C, j, γ〉e

The tabulation technique for SD–2SA looks like
a combination of the tabular techniques de-
scribed for ∗-Earley and ∗-TD strategies. This
is not surprising because top-down and Ear-
ley strategies can be described using SD–2SA.
It was noted in (de la Clergerie and Alonso
Pardo, 1998) that modes are often not explicitly
needed. This is the case for Restricted LPDA:
write and erase modes corresponds to call and

[A, h | B, i,⊗, C, j, γ | D, p, η, E, q]

[−,− | C, j, |=, F, k,− | −,−,−,−,−]
C[◦◦]

a
7→ C[◦◦] F []

[A, h | B, i,⊗, C, j, γ | −,−,−,−,−]

[A, h | C, j,→, F, k, γ | −,−,−,−,−]
C[◦◦]

a
7→ C[◦◦] F [◦◦]

[A, h | B, i,⊗, C, j, γ | −,−,−,−,−]

[C, j | C, j,ր, F, k, γ′ | −,−,−,−,−]
C[◦◦]

a
7→ C[◦◦] F [◦◦γ′]

[A, h | B, i,⊗1, C, j, γ | −,−,−,−,−]
[M, m | N, t,⊗2, A, h, γ′ | −,−,−,−,−]

[M, m | C, j,ց, F, k, γ′ | −,−,−,−,−]
C[◦◦γ]

a
7→ C[◦◦γ] F [◦◦]

[A, h | B, i,⊗, C, j, γ | D, p, η, E, q]

[A, h | B, i,⊗, F, k, γ | D, p, η, E, q]
C[◦◦]

a
7→ F [◦◦]

[−,− | B, i, |=, C, j,− | −,−,−,−,−]
[M, m | N, t,⊗, B, i, γ | −,−,−,−,−]

[M, m | N, t,⊗, F, k, γ | −,−,−,−,−]
B[◦◦] C[]

a
7→ F [◦◦]

[A, h | B, i,→, C, j,− | D, p, η, E, q]
[A, h |M, m,⊗, B, i, η | −,−,−,−,−]

[A, h |M, m,→, F, k,− | D, p, η, E, q]
B[◦◦] C[]

a
7→ F []

[A, h | B, i,ց, C, j,− | D, p, η, E, q]
[A, h | N, t,⊗1, M, m, η | −,−,−,−,−]
[M, m | O, u,⊗2, B, i, γ | −,−,−,−,−]

[M, m | O, u,⊗2F, k,− | B, i, γ, C, j]
B[◦◦] C[]

a
7→ F []

[B, i | B, i,ր, C, j,− | D, p, η, E, q]
[M, m |, N, t,⊗, B, i, γ | −,−,−,−]
[M, m | D, p,ց, E, q, γ′′ | O, u, η′, P, v]

[M, m | N, t,⊗, F, k,− | O, u, η′, P, v]
B[◦◦] C[]

a
7→ F []

Table 11: Combining rules for ∗-TD strategies

return phases, which can be distinguished by
the form of the non-terminals. A session cor-
responds to the evolution of the index stack
through a spine. With respect to the correspon-
dence between items for ∗-Earley strategies and
items for SD–2SA:

• A call item

[A, h | B, i, C, j, γ | −,−,−,−]

corresponds to a SD–2SA context-free item

〈A, h〉〈B, i〉 ⊗ 〈C, j, γ〉w

where ⊗ indicates the operation performed
to have γ as the top of the index stack.

• A return item

[A, h | B, i, C, j, γ | D, p, E, q]

corresponds to a escaped context-free item

〈A, h〉〈B, i〉 ⊗ [〈D, p, γ〉〈E, q〉]〈C, j, γ〉e

where ⊗ indicates the operation performed
during the call phase to have γ as the top
of the index stack.

• A special point item

[−,− | B, i, C, j,− | −,−,−,−]

corresponds to a context-free item

〈B, i〉〈B, i〉|=〈C, j, |=0〉m

where o indicates the mode of the automa-
ton when the current session was started,
m = w if the item represents the creation
of a new spine and m = e if the item rep-
resents the termination of a spine.

A similar correspondence exists between
items for ∗-TD strategies and SD–2SA items:

• A call item

[A, h | B, i,⊗, C, j, γ | −,−,−,−,−]

corresponds to a SD–2SA context-free item

〈A, h〉〈B, i〉 ⊗ 〈C, j, γ〉w

• A return item

[A, h | B, i,⊗, C, j,− | D, p, η, E, q]

corresponds to a escaped context-free item

〈A, h〉〈B, i〉 ⊗ [〈D, p, η〉〈E, q〉]〈C, j,⊥〉e

• A special point item

[−,− | B, i, |=, C, j,− | −,−,−,−,−]

corresponds to a context-free item

〈B, i〉〈B, i〉|=〈C, j, |=0〉m

as the items for ∗-Earley strategies.

The correspondence between combination
rules for ∗-Earley and ∗-TD strategies in Re-
stricted LPDA and the rules combining items
in SD–2SA is shown in table 12.

6.2 BU–2SA

Bottom-up 2-Stack Automata (de la Clergerie
et al., 1998) are a projection of SD–2SA requir-
ing the emptiness of the auxiliary stack during
computations in mode write. Only two marks
are needed: |= indicates a new session and ⊲
indicates a push onto the master stack. With
respect to the tabulation technique, this type
of automata also considers context-free deriva-
tions, corresponding to call configurations and
represented by context-free items of the form

〈B, i〉 ⊗ 〈C, j, |=o〉m

where ⊗ ∈ {⊲, |=}, m ∈ {w, e} and o ∈ {w, e}
is the mode of the automaton when the cur-
rent session was started, and escaped context-
free derivations, corresponding to return deriva-
tions and represented by items of the form

〈B, i〉 ⊗ [〈D, p〉〈E, q〉]〈C, j, γ〉e

The tabulation technique proposed for ∗-BU
strategies is similar to the proposal for BU–
2SA but for the absence of modes and marks.
Modes are not needed because the call and re-
turn phases are differentiated by the form of
the involved non-terminal. The mark ⊲ is ac-
tually redundant in BU–2SA, as every push in
write mode involves a mark of this type, and
is only considered to provide a true projection
from SD–2SA. The mark |= is not necessary be-
cause modes are not considered and sessions are
implicitly represented as the propagation of the
index stack through a spine. Table 13 shows
the correspondence between combination rules
for ∗-BU strategies and rules combining items
in BU–2SA.

6.3 LIA

Linear Indexed Automata (Nederhof, 1998b)
are an extension of push-down automata in
which stack symbols are replaced by elements in
VN [V ∗

I], the set of transitions having the form

1. C[◦◦]
a
7→ C[◦◦] F []

2. C[◦◦γ]
a
7→ F [◦◦γ′]

3. B[◦◦γ] C[]
a
7→ F [◦◦γ′]

4. B[] C[◦◦γ]
a
7→ F [◦◦γ′]

Restricted LPDA SD–2SA

C[◦◦]
a
7→ F [◦◦] [SWAP] without mode change

C[]
a
7→ F [] [SWAP] with mode change

C[◦◦]
a
7→ C[◦◦] F [] [|=–WRITE]

B[◦◦] C[]
a
7→ F [◦◦] [|=–ERASE]

C[◦◦]
a
7→ C[◦◦] F [◦◦] [→–WRITE]

C[◦◦γ]
a
7→ C[◦◦γ] F [◦◦] [ց–WRITE]

C[◦◦]
a
7→ C[◦◦] F [◦◦γ′] [ր–WRITE]

B[◦◦1] C[◦◦2]
a
7→ F [◦◦2] [→–ERASE]

B[◦◦1] C[◦◦2γ
′]

a
7→ F [◦◦2] [ց–ERASE]

B[◦◦1γ] C[◦◦2]
a
7→ F [◦◦2γ] [ր–ERASE]

Table 12: Correspondence between Restricted LPDA and SD–2SA

Restricted LPDA BU–2SA

C[◦◦]
a
7→ F [◦◦] [SWAP1] [SWAP2]

C[◦◦]
a
7→ C[◦◦] F [] [|=–WRITE] [⊲–WRITE]

B[◦◦] C[]
a
7→ F [◦◦] [|=–ERASE]

B[] C[◦◦]
a
7→ F [◦◦] [→–ERASE]

B[] C[◦◦]
a
7→ F [◦◦γ′] [ց–ERASE]

B[] C[◦◦γ]
a
7→ F [◦◦] [ր–ERASE]

Table 13: Correspondence between Restricted LPDA and BU–2SA

with either γ or γ′ (or both) equal to ǫ. The
tabulation technique for this class of automata
consider items

((B, C, j, i), (γ, D, E, p, q))

which are identical to items used for tabulation
of ∗-BU strategies. In fact, there is an implicit
distinction in (Nederhof, 1998b) between items
with the second tuple equal to (−,−,−,−,−)
and items having that tuple instantiated. The
former correspond to call items in ∗-BU strate-
gies, the latter correspond to return items.

Transitions of type 1 and 4 are the same in
both classes of automata (see table 4). Transi-
tions of type 2 and 3 are present in ∗-BU strate-
gies in a restrictive form mandating γ and γ′ be
equal to ǫ. The recognition power of both class
of automata being the same, linear indexed au-
tomata can be used to implement strategies that
are not possible to implement using the transi-
tions for ∗-BU strategies. As an example, shift-
reduce parsing algorithms, such as LR (Neder-
hof, 1998a), are not definable without transi-
tions of type 4 (and therefore they can not be
implemented in BU–2SA). By including the fol-

lowing combination rules, we obtain a tabula-
tion framework for ∗-BU strategies in Restricted
LPDA which is identical to that of LIA:

[B, i, C, j, γ | D, p, E, q]

[B, i, F, k, γ′ | B, i, C, j]
C[◦◦]

a
7→ F [◦◦γ′]

[B, i, C, j, γ | D, p, E, q]
[D, p, E, q, γ′ | O, u, P, v]

[B, i, F, k, γ′ | O, u, P, v]
C[◦◦γ]

a
7→ F [◦◦]

[B, i, C, j,− | −,−,−,−]
[M, m, B, i, γ | D, p, E, q]

[M, m, F, k, γ′ |M, m, B, i]
B[◦◦] C[]

a
7→ F [◦◦γ′]

[B, i, C, j,− | −,−,−,−]
[M, m, B, i, γ | D, p, E, q]
[D, p, E, q, γ′ | O, u, P, v]

[M, m, F, k, γ′ | O, u, P, v]
B[◦◦γ] C[]

a
7→ F [◦◦]

6.4 A dual version of LIA

Linear indexed automata recognize the in-
dex stacks in a bottom-up manner. Nederhof
(1998b) conjectures the existence of a dual stack
automata for a top-down recognition of the in-
dex stacks, with the following set of transitions:

1. B[◦◦] C[]
a
7→ F [◦◦]

2. C[◦◦γ]
a
7→ F [◦◦γ′]

3. B[◦◦γ]
a
7→ C[◦◦γ′] F []

4. B[◦◦γ]
a
7→ C[] F [◦◦γ′]

where either γ or γ′ (or both) equal to ǫ. De-
signing a tabulation technique for this class of
automata is difficult because a chain of transi-
tions of type 4 can produce a gap of unbounded
size in the stack during the transmission of the
dependent stack. To avoid this problem, we pro-
pose a slightly different set of transitions:

1. B[◦◦] C[]
a
7→ F [◦◦]

2. C[◦◦]
a
7→ F [◦◦]

3. C[◦◦]
a
7→ C[◦◦] F []

4. C[◦◦γ]
a
7→ C[◦◦γ] F [◦◦γ′]

5. B[◦◦] C[]
a
7→ F []

where transitions of type 4 transmit the index
stack without creating a gap. The new transi-
tions of type 5 are the alternative to those tran-
sitions of type 1 expecting an empty stack to
be transmitted from B to F . This new class of
automata can be tabulated using the technique
developed for ∗-TD strategies.

7 Conclusion

We have studied the tabulation of automata for
tree adjoining languages. We have taken LPDA
and LIG as a starting point, and, for each fam-
ily of parsing strategies, we have applied the
following steps:

1. Description of the parsing strategies for
LIG in LPDA.

2. Identification of the types of transition in-
volved.

3. Design of a tabulation technique based on
those types of transitions.

The resulting tabulation techniques have
been compared with previous approaches. As
a result we have found the technique for ∗-BU
strategies to be identical to the technique de-
signed for BU–2SA and being a subset of those
designed for LIA (but with a possible exten-
sion to be equivalent to LIA). Techniques devel-
oped for ∗-Earley and ∗-TD strategies together
allow us to obtain a better understanding of
the complex tabulation technique available for
SD–2SA. There is no tabulation technique for
pure top-down automata for tree adjoining lan-
guages currently available but techniques devel-
oped for ∗-TD strategies provide the basis for a
new model of automata, a dual version of LIA,
which could also serve as a basis for the design
of a top-down projection of SD–2SA.

8 Acknowledgments

This work has been partially supported by
FEDER of European Union (1FD97-0047-C04-
02) and Xunta de Galicia (XUGA20402B97).

References

Alfred V. Aho. 1968. Indexed grammars — an ex-
tension of context-free grammars. Journal of the
Association for Computer Machinery, 15(4):647–
671, October.

Tilman Becker. 1994. A new automaton model
for TAGs: 2-SA. Computational Intelligence,
10(4):422–430.

Pierre Boullier. 1995. Yet another O(n6) recogni-
tion algorithm for mildly context-sensitive lan-
guages. In Proc. of the Fourth International
Workshop on Parsing Technologies, pages 34–47.
Extended version as INRIA Rapport de Recherche
2730.

Eric de la Clergerie and Miguel A. Alonso Pardo.
1998. A tabular interpretation of a class of 2-
Stack Automata. In COLING-ACL’98, 36th An-
nual Meeting of the Association for Computa-
tional Linguistics and 17th International Confer-
ence on Computational Linguistics, Proceedings
of the Conference, volume II, pages 1333–1339,
Montreal, Quebec, Canada, August. ACL.

Eric de la Clergerie and Bernard Lang. 1994. LPDA:
Another look at tabulation in logic programming.
In Van Hentenryck, editor, Proc. of the 11th
International Conference on Logic Programming
(ICLP’94), pages 470–486. MIT Press, June.

Eric de la Clergerie, Miguel A. Alonso Pardo, and
David Cabrero Souto. 1998. A tabular interpreta-
tion of bottom-up automata for TAG. In Proc. of
Fourth International Workshop on Tree-Adjoining
Grammars and Related Frameworks (TAG+4),
pages 42–45, Philadelphia, PA, USA, August.

Gerald Gazdar. 1987. Applicability of indexed
grammars to natural languages. In U. Reyle and
C. Rohrer, editors, Natural Language Parsing and
Linguistic Theories, pages 69–94. D. Reidel Pub-
lishing Company.

Andrew Haas. 1989. A parsing algorithm for
unification grammar. Computational Linguistics,
15(4):219–232.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Lan-
guages. Vol 3: Beyond Words, chapter 2, pages
69–123. Springer-Verlag, Berlin/Heidelberg/New
York.

Bernard Lang. 1988. Complete evaluation of Horn
Clauses, an automata theoretic approach. Rap-
port de Recherche 913, INRIA, Rocquencourt,
France, November.

Mark-Jan Nederhof. 1997. Solving the correct-
prefix property for TAGs. In T. Becker and H.-
V. Krieger, editors, Proc. of the Fifth Meeting on
Mathematics of Language, pages 124–130, Schloss
Dagstuhl, Saarbruecken, Germany, August.

Mark-Jan Nederhof. 1998a. An alternative LR al-
gorithm for TAGs. In COLING-ACL’98, 36th
Annual Meeting of the Association for Compu-
tational Linguistics and 17th International Con-
ference on Computational Linguistics, Proceed-
ings of the Conference, volume II, pages 946–952,
Montreal, Quebec, Canada, August. ACL.

Mark-Jan Nederhof. 1998b. Linear indexed au-
tomata and tabulation of TAG parsing. In Proc.

of First Workshop on Tabulation in Parsing and
Deduction (TAPD’98), pages 1–9, Paris, France,
April.

Fernando C. N. Pereira and David H. D. War-
ren. 1980. Definite Clause Grammars for lan-
guage analysis — a survey of the formalism and
a comparison with Augmented Transition Net-
works. Artificial Intelligence, 13:231–278.

Fernando C. N. Pereira and David H. D. Warren.
1983. Parsing as deduction. In Proc. of the 21st
Annual Meeting of the Association for Computa-
tional Linguistics, pages 137–144. ACL, June.

C. Pollard. 1984. Generalized Phrase Structure
Grammars, Head Grammars and Natural Lan-
guage. Ph.D. thesis, Stanford University.

Yves Schabes and K. Vijay-Shanker. 1990. Deter-
ministic left to right parsing of tree adjoining lan-
guages. In Proc. of 28th Annual Meeting of the
Association for Computational Linguistics, pages
276–283, Oittsburgh, Pennsylvania, USA, June.
ACL.

Stuart M. Shieber, Yves Schabes, and Fernando C.
N. Pereira. 1995. Principles and implementation
of deductive parsing. Journal of Logic Program-
ming, 24(1&2):3–36, July-August.

M. Steedman. 1986. Combinators and grammars.
In R. Oehrle, E. Bach, and D Wheeler, edi-
tors, Categorial Grammars and Natural Language
Structures, pages 417–442. Foris, Dordrecht.

K. Vijay-Shanker and David J. Weir. 1993. Parsing
some constrained grammar formalisms. Compu-
tational Linguistics, 19(4):591–636.

K. Vijay-Shanker and David J. Weir. 1994.
The equivalence of four extensions of context-
free grammars. Mathematical Systems Theory,
27:511–545.

K. Vijay-Shanker. 1988. A Study of Tree Adjoin-
ing Grammars. Ph.D. thesis, University of Penn-
sylvania, January. Available as Technical Report
MS-CIS-88-03 LINC LAB 95 of the Department
of Computer and Information Science, University
of Pennsylvania.

